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Preface

OBJECTIVES

Recent years have witnessed a thriving research activity on cooperative con-
trol and motion coordination. This interest is motivated by the growing
possibilities enabled by robotic networks in the monitoring of natural phe-
nomena and the enhancement of human capabilities in hazardous and un-
known environments.

Our first objective in this book is to present a coherent introduction to
basic distributed algorithms for robotic networks. This emerging discipline
sits at the intersection of different areas such as distributed algorithms, par-
allel processing, control, and estimation. Our second objective is to provide
a self-contained, broad exposition of the notions and tools from these areas
that are relevant in cooperative control problems. These concepts include
graph-theoretic notions (connectivity, adjacency, and Laplacian matrices),
distributed algorithms from computer science (leader election, basic tree
computations) and from parallel processing (averaging algorithms, conver-
gence rates), and geometric models and optimization (Voronoi partitions,
proximity graphs). Our third objective is to put forth a model for robotic
networks that helps to rigorously formalize coordination algorithms running
on them. We illustrate how computational geometry plays an important role
in modeling the interconnection topology of robotic networks. We draw on
classical notions from distributed algorithms to provide complexity measures
that characterize the execution of coordination algorithms. Such measures
allow us to quantify the algorithm performance and implementation costs.
Our fourth and last objective is to present various algorithms for coordina-
tion tasks such as connectivity maintenance, rendezvous, and deployment.
We especially emphasize the analysis of the correctness and of the complex-
ity of the proposed algorithms. The technical treatment combines control-
theoretic tools such as Lyapunov functions and invariance principles with
techniques from computer science and parallel processing, such as induction
and message counting.
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THE INTENDED AUDIENCE

The intended audience for this book consists of first- and second-year grad-
uate students in control and robotics from Computer Science, Electrical
Engineering, Mechanical Engineering, and Aerospace Engineering. A famil-
iarity with basic concepts from analysis, linear algebra, dynamical systems,
and control theory is assumed. The writing style is mathematical: we have
aimed at being precise in the introduction of the notions, the statement of
the results, and the formal description of the algorithms. This mathematical
style is complemented by numerous examples, exercises, intuitive explana-
tions and motivating discussions for the introduction of novel concepts.

Researchers in the fields of control theory and robotics who are not aware
of the literature on distributed algorithms will also benefit from the book.
The book uses notions with a clear computer-science flavor such as syn-
chronous networks, complexity measures, basic tree computations, and lin-
ear distributed iterations, and integrates them into the study of robotic
networks. Likewise, researchers in the fields of distributed algorithms and
automata theory who are not aware of robotic networks and distributed con-
trol will also find the book useful. The numerous connections that can be
drawn between the classical study of distributed algorithms and the present
book provide a friendly roadmap with which to step into the field of con-
trolled coordination of robotic networks.

AN OUTLINE OF THE BOOK

Chapter 1 presents a broad introduction to distributed algorithms on syn-
chronous networks. We start by presenting basic matrix notions and a
primer on graph theory that gives special emphasis to linear algebraic as-
pects such as adjacency and Laplacian matrices. After this, we introduce
the notion of synchronous networks, and we present time, communication,
and space complexity notions. We examine these notions in basic algorithms
such as broadcast, tree computation, and leader election. The chapter ends
with a thorough treatment of linear iterations and averaging algorithms.

Chapter 2 presents basic geometric notions that are relevant in motion co-
ordination. Robotic networks have a spatial component which is not always
present in synchronous networks as studied in computer science. Geometric
objects such as polytopes, Voronoi partitions, and geometric centers play
an important role in modeling the interaction of robotic networks with the
physical environment. Proximity graphs allow us to rigorously formalize the
interconnection topology of a network of robotic agents, and characterize
the spatially distributed character of coordination algorithms. This notion
is a natural translation of the notion of distributed algorithms treated in
the previous chapter. The chapter concludes with a detailed discussion on
concepts from geometric optimization and multicenter functions.
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Chapter 3 introduces a model for a group of robots that synchronously
communicate/sense locally, process information, and move. We describe
the physical components of the robotic network and we introduce a formal
notion of a motion coordination algorithm as a control and communication
law. Generalizing the notions introduced in Chapter 1, we introduce the
notions of task and of time, communication, and space complexity. We
illustrate these concepts by means of a simple and insightful example of a
group of robots moving on a circle.

Chapter 4 analyzes in detail two coordination tasks: connectivity main-
tenance and rendezvous. The objective of “connectivity maintenance” is to
establish local rules that allow agents to move without losing the connec-
tivity of the overall networks. The objective of “rendezvous” is to establish
local rules that allow agents to agree on a common spatial location. We
present coordination algorithms that achieve these tasks, making use of the
geometric concepts introduced in the previous chapters. Furthermore, we
provide results on the correctness and complexity of these algorithms.

Chapter 5 considers deployment problems. The objective of “deployment”
is to establish local rules that allow agents to achieve optimal network config-
urations in an environment of interest. Here, optimality is defined using the
multicenter functions from geometric optimization introduced in Chapter 2.
We present coordination algorithms that achieve these tasks, characterizing
their correctness and complexity.

Chapter 6 has a dual purpose. First, we introduce an event-driven control
and communication law, in which computation and communication actions
are triggered by asynchronous events, rather than taking place on a periodic
schedule. Second, we consider a boundary tracking problem, and propose
an “estimation and balancing” algorithm that allows a robotic network to
monitor a moving boundary efficiently.

The reader will note that, as the discussion progresses, the selection of
topics emphasizes problems in which we have been directly involved. There
are exciting topics that have been considered in the literature and are not
presented here in depth, albeit we briefly discuss a number of them through-
out the exposition. In this, our first effort, we decided to tackle the problems
that we knew better, postponing the rest for the future. We hope the reader
will appreciate the result and share, while reading it, some of the fun we
had in writing it.

HOW TO USE THIS BOOK AS A TEXT

Our experience and opinion is that this text can be used for a quarter- or
semester-long course on “Distributed Control” or on “Robotic Networks.”
Such a course could be taught in an Engineering or a Computer Science
department. We taught such a course at our respective institutions over a
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10 weeks, 3 hours a week, period, skipping some material and some proofs
(e.g., skipping some algebraic graph theory in Chapter 1, some of the multi-
center functions and the nonconvex geometry treatment in Chapter 2, and
the relative-sensing model in Chapter 3). With proofs and more complete
treatment, we estimate that the material might require 45 hours of lecture
time.

Finally, the complete latest version of the manuscript with supplementary
material, such as slides and software, is freely available on the internet at:

http://coordinationbook.info

At this website, we plan to maintain an up-to-date electronic version of the
manuscript that incorporates corrections and minor improvements.
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Chapter One

An introduction to distributed algorithms

Graph theory, distributed algorithms, and linear distributed algorithms are
a fascinating scientific subject. In this chapter we provide a broad introduc-
tion to distributed algorithms by reviewing some preliminary graphical con-
cepts and by studying some simple algorithms. We begin the chapter with
one section introducing some basic notation and another section stating a
few useful facts from matrix theory, dynamical systems, and convergence
theorems based on invariance principles. In the third section of the chapter,
we provide a primer on graph theory with a particular emphasis on alge-
braic aspects, such as the properties of adjacency and Laplacian matrices
associated to a weighted digraph. In the next section of the chapter, we in-
troduce the notion of synchronous network and of distributed algorithm. We
state various complexity notions and study them in simple example prob-
lems such as the broadcast problem, the tree computation problem, and the
leader election problem. In the fifth section of the chapter, we discuss linear
distributed algorithms. We focus on linear algorithms defined by sequences
of stochastic matrices and review the results on their convergence proper-
ties. We end the chapter with three sections on, respectively, bibliographical
notes, proofs of the results presented in the chapter, and exercises.

1.1 ELEMENTARY CONCEPTS AND NOTATION

1.1.1 Sets and maps

We assume that the reader is familiar with basic notions from topology,
such as the notions of open, closed, bounded, and compact sets. In this
section, we just introduce some basic notation. We let x ∈ S denote a point
x belonging to a set S. If S is finite, we let |S| denote the number of its
elements. For a set S, we let P(S) and F(S) denote the collection of subsets
of S and the collection of finite subsets of S, respectively. The empty set
is denoted by ∅. The interior and the boundary of a set S are denoted by
int(S) and ∂S, respectively. If R is a subset of or equal to S, then we write
R ⊂ S. If R is a strict subset of S, then we write R ( S. We describe
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subsets of S defined by specific conditions via the notation

{x ∈ S | condition(s) on x}.
Given two sets S1 and S2, we let S1 ∪S2, S1 ∩S2, and S1 × S2 denote
the union, intersection, and Cartesian product of S1 and S2, respectively.
Given a collection of sets {Sa}a∈A indexed by a set A, we interchangeably
denote their Cartesian product by

∏

a∈A Sa or by
∏{Sa | a ∈ A}. We

adopt analogous notations for union and intersection. We denote by Sn the
Cartesian product of n copies of the same S. The diagonal set diag(Sn) of
Sn is given by diag(Sn) = {(s, . . . , s) ∈ Sn | s ∈ S}. The set S1 \S2 contains
all points in S1 that do not belong to S2.

We let N and Z≥0 denote the set of natural numbers and of non-negative
integers, respectively. We let R, R>0, R≥0, and C denote the set of real
numbers, strictly positive real numbers, non-negative real numbers, and
complex numbers, respectively. The sets Rd, Cd, and Sd ⊂ Rd+1 are the
d-dimensional Euclidean space, the d-dimensional complex space, and the
d-dimensional sphere, respectively. The tangent space of Rd, denoted by
TRd, is the set of all vectors tangent to Rd. Note that TRd can be identified
with Rd×Rd by mapping a vector v tangent to Rd at x ∈ Rd to the pair (x, v).
Likewise, TSd is the set of all vectors tangent to Sd, and can be identified with
Sd ×Rd. The Euclidean space Rd contains the vectors 0d = (0, . . . , 0), 1d =
(1, . . . , 1), and the standard basis e1 = (1, 0, . . . , 0), . . . ,ed = (0, . . . , 0, 1).
Given a < b, we let [a, b] and ]a, b[ denote the closed interval and the open
interval between a and b, respectively.

Given two sets S and T , we let f : S → T denote a map from S to T ,
that is, a unique way of associating an element of T to an element of S.
The image of the map f : S → T is the set image(f) = {f(s) ∈ T | s ∈ S}.
Given the map f : S → T and a set S1 ⊂ S, we let f(S1) = {f(s) | s ∈ S1}
denote the image of the set S1 under the map f . Given f : S → T and
g : U → S, we let f ◦ g : U → T , defined by f ◦ g (u) = f(g(u)), denote
the composition of f and g. The map idS : S → S is the identity map on
S. Given f : S → R, the support of f is the set of elements s such that
f(s) 6= 0. Given a subset R ( S, the indicator map 1R : S → R associated
with R is given by 1R(q) = 1 if q ∈ R, and 1R(q) = 0 if q 6∈ R. Given
two sets S and T , a set-valued map, denoted by h : S ⇉ T , associates to
an element of S a subset of T . Given a map f : S → T , the inverse map
f−1 : T ⇉ S is defined by

f−1(t) = {s ∈ S | f(s) = t}.
If f is a real-valued function, that is, a function of the form f : S → R,

then f−1(x) ⊂ S, for any x ∈ R, is a level set of f . In what follows,
we require the reader to be familiar with some basic smoothness notions
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for functions. Specifically, we will use the notions of locally and globally
Lipschitz functions, differentiable, piecewise differentiable and continuously
differentiable functions, and functions that are multiple times differentiable.

Finally, we introduce the so-called Bachmann–Landau symbols. For f, g :
N → R≥0, we say that f ∈ O(g) (resp., f ∈ Ω(g)) if there exist n0 ∈ N and
K ∈ R>0 (resp., k ∈ R>0) such that f(n) ≤ Kg(n) for all n ≥ n0 (resp.,
f(n) ≥ kg(n) for all n ≥ n0). If f ∈ O(g) and f ∈ Ω(g), then we use the
notation f ∈ Θ(g).

1.1.2 Distance functions

A function dist : S × S → R≥0 defines a distance on a set S if it satisfies:
(i) dist(x, y) = 0 if and only if x = y; (ii) dist(x, y) = dist(y, x), for all
x, y ∈ S; and (iii) dist(x, y) ≤ dist(x, z) + dist(z, y), for all x, y, z ∈ S. The
pair (S, dist) is usually called a metric space.

Some relevant examples of distance functions include the following:

Lp-distance on Rd. For p ∈ [1,+∞[, consider the Lp-norm on Rd defined

by ‖x‖p = (
∑d

i=1 |xi|p)1/p. For p = +∞, consider the L∞-norm on
Rd defined by ‖x‖∞ = maxi∈{1,...,d} |xi|. Any of these norms defines

naturally a Lp-distance in Rd by distp(x, y) = ‖y − x‖p. In partic-
ular, the most widely used is the Euclidean distance, corresponding
to p = 2. Unless otherwise noted, it is always understood that Rd is
endowed with this notion of distance. We will also use the L1- and
the L∞-distances. Finally, it is convenient to define the norm ‖z‖C of
a complex number z ∈ C to be the Euclidean norm of z regarded as a
vector in R2.

Geodesic distance on Sd. Another example is the notion of geodesic dis-
tance on Sd. This is defined as follows. For x, y ∈ Sd, distg(x, y) is
the length of the shortest curve in Sd connecting x and y. We will
use this notion of distance in dimensions d = 1 and d = 2. On the
unit circle S1, by convention, let us define positions as angles measured
counterclockwise from the positive horizontal axis. Then, the geodesic
distance can be expressed as

distg(x, y) = min{distc(x, y),distcc(x, y)}, x, y ∈ S1,

where distc(x, y) = (x − y) mod 2π is the clockwise distance and
distcc(x, y) = (y − x) mod 2π is the counterclockwise distance. Here
the clockwise distance between two angles is the path length from an
angle to the other traveling clockwise, and x mod 2π is the remainder
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Figure 1.1 Open balls (dashed lines), a closed ball (solid line), and an open lune for the
Euclidean distance on the plane.

of the division of x by 2π. On the sphere S2, the geodesic distance can
be computed as follows. Given x, y ∈ S2, one considers the great circle
determined by x and y. Then, the geodesic distance between x and y
is exactly the length of the shortest arc in the great circle connecting
x and y.

Cartesian product distance on Rd1 × Sd2. Consider Rd1 endowed with
an Lp-distance, p ∈ [1,+∞], and Sd2 endowed with the geodesic dis-
tance. Given (x1, y1), (x2, y2) ∈ Rd1 ×Sd2 , their Cartesian product dis-
tance is given by distp(x1, x2) + distg(y1, y2). Unless otherwise noted,
it is understood that Rd1 ×Sd2 is endowed with the Cartesian product
distance (dist2,distg).

Given a metric space (S, dist), the open and closed balls of center x ∈ S
and radius ε ∈ R>0 are defined by, respectively,

B(x, ε) = {y ∈ S | dist(x, y) < ε},
B(x, ε) = {y ∈ S | dist(x, y) ≤ ε}.

Consider a point x ∈ X and a set S ⊂ X. A neighborhood of a point
x ∈ X is a subset of X that contains an open ball centered at x. A neigh-
borhood of a set Y ⊂ X is a subset of X that, for each point y ∈ Y ,
contains an open ball centered at y. The open lune associated to x, y ∈ S is
B(x,dist(x, y))∩B(y, dist(x, y)). These notions are illustrated in Figure 1.1
for the plane equipped with the Euclidean distance.

Given a metric space (S, dist), the distance between a point x ∈ S and a
set W ⊂ S is the infimum of all distances between x and each of the points
in W . Formally, we set

dist(x,W ) = inf{dist(x, y) | y ∈W}.
The projection of a point x ∈ S onto a set W ⊂ S is the set-valued map

4

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

projW : S ⇉ W defined by

projW (x) = {y ∈W | dist(x, y) = dist(x,W )}.
If W is a closed set, then projW (x) 6= ∅ for any x ∈ S. The diameter of a
set is the maximum distance between any two points in the set; formally, we
set diam(S) = sup{dist(x, y) | x, y ∈ S}. With a slight abuse of notation,
we often use diam(P ) to denote diam({p1, . . . , pn}) for P = (p1, . . . , pn).

1.1.3 Curves

A curve is the image of a continuous map γ : [a, b] → Rd. The map γ is called
a parameterization of the curve. We usually identify a parameterization with
the curve it defines. Without loss of generality, any curve can be given a
parametrization with a = 0 and b = 1. A curve connects the two points p
and q if γ(0) = p and γ(1) = q. A curve γ : [0, 1] → Rd is not self-intersecting
if γ is injective on (0, 1). A curve is closed if γ(0) = γ(1).

A set S ⊂ Rd is path connected if any two points in S can be joined by
a curve. A set S ⊂ X is simply connected if it is path connected and any
not self-intersecting closed curve can be continuously deformed to a point in
the set; that is, for any injective continuous map γ : [0, 1] → S that satisfies
γ(0) = γ(1), there exist p ∈ S and a continuous map H : [0, 1] × [0, 1] → S
such that H(t, 0) = γ(t) and H(t, 1) = p for all t ∈ [0, 1]. Informally, a
simply connected set is a set that consists of a single piece and does not
have any holes.

Next, consider a piecewise continuously differentiable curve γ : [0, 1] →
Rd; the length of γ is

length(γ) =

∫ 1

0
‖γ̇(s)‖2ds,

and its arc-length parameter is

sarc(s) =

∫ s

0
‖γ̇(t)‖2dt.

Note that as the parameter t varies in [0, 1], the arc-length parameter sarc(t)
varies in [0, length(γ)]. The arc-length parameterization of the curve is the
map γarc : [0, length(γ)] → Rd defined by the equation γarc(sarc(s)) = γ(s).
With a slight abuse of notation, we will often drop the subindex arc and
denote the arc-length parameterization by γ too.

For closed, not self-intersecting curves in the plane, we introduce the
notion of signed and absolute curvatures as follows. Let γ : [0, length(γ)] →

5
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R2 be the counterclockwise arc-length parameterization of a curve. Assume
γ is closed, not self-intersecting and twice continuously differentiable. Define
the tangent vector γ′ : [0, length(γ)] → R2 by γ′(s) = dγ

ds . Note that the
tangent vector has unit length, that is, ‖γ′(s)‖2 = 1 for all s. Additionally,
define the outward normal vector nout : [0, length(γ)] → R2 to be the unit-
length vector that is point-wise orthogonal to the tangent vector and directed
outside the set enclosed by the closed curve γ. With these notations, the
signed curvature κsigned : [0, length(γ)] → R is defined by requiring that it
satisfies

γ′′(s) = −κsigned(s) nout(s), and n′
out(s) = κsigned(s)γ

′(s).

If the set enclosed by the closed curve γ is strictly convex, then the signed
curvature of γ is strictly positive. In general, the (absolute) curvature κabs :
[0, length(γ)] → R≥0 and the radius of curvature ρ : [0, length(γ)] → R≥0 of
the curve γ are defined by, respectively,

κabs(s) = |κsigned(s)|, and ρ(s) = |κsigned(s)|−1.

1.2 MATRIX THEORY

Here, we present basic notions and results about matrix theory, following the
treatments in Horn and Johnson (1985) and Meyer (2001). We let Rn×m and
Cn×m denote the set of n×m real and complex matrices. Given a real matrix
A and a complex matrix U , we let AT and U∗ denote the transpose of A
and the conjugate transpose matrix of U , respectively. We let In denote the
n× n identity matrix. For a square matrix A, we write A > 0, resp. A ≥ 0,
if A is symmetric positive definite, resp. symmetric positive semidefinite.
For a real matrix A, we let kernel(A) and rank(A) denote the kernel and
rank of A, respectively. Given a vector v, we let diag(v) denote the square
matrix whose diagonal elements are equal to the component v and whose
off-diagonal elements are zero.

1.2.1 Matrix sets

A matrix A ∈ Rn×n with entries aij , i, j ∈ {1, . . . , n}, is

(i) Orthogonal if AAT = In, and is special orthogonal if it is orthogonal
with det(A) = +1. The set of orthogonal matrices is a group.1

1A set G with a binary operation, denoted by G × G ∋ (a, b) 7→ a ⋆ b ∈ G, is a group if: (i)
a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G (associativity property); (ii) there exists e ∈ G such that
a ⋆ e = e ⋆ a = a for all a ∈ G (existence of an identity element); and (iii) there exists a−1 ∈ G
such that a ⋆ a−1 = a−1 ⋆ a = e for all a ∈ G (existence of inverse elements).
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(ii) Nonnegative (resp., positive) if all its entries are nonnegative (resp.,
positive).

(iii) Row-stochastic (or stochastic for brevity) if it is nonnegative and
∑n

j=1 aij = 1, for all i ∈ {1, . . . , n}; in other words, A is row-
stochastic if

A1n = 1n.

(iv) Column-stochastic if it is nonnegative and
∑n

i=1 aij = 1, for all
j ∈ {1, . . . , n}.

(v) Doubly stochastic if A is row-stochastic and column-stochastic.

(vi) Normal if ATA = AAT .

(vii) A permutation matrix if A has precisely one entry equal to one
in each row, one entry equal to one in each column, and all other
entries equal to zero. The set of permutation matrices is a group.

The scalars µ1, . . . , µk are convex combination coefficients if µi ≥ 0, for
i ∈ {1, . . . , k}, and

∑k
i=1 µi = 1. (Each row of a row-stochastic matrix

contains convex combination coefficients.) A convex combination of vectors
is a linear combination of the vectors with convex combination coefficients.
A subset U of a vector space V is convex if the convex combination of any
two elements of U takes value in U . For example, the set of stochastic
matrices and the set of doubly stochastic matrices are convex.

Theorem 1.1 (Birkhoff–von Neumann). A square matrix is doubly
stochastic if and only if it is a convex combination of permutation matri-
ces.

Next, we review two families of relevant matrices with useful properties.
Toeplitz matrices are square matrices with equal entries along each diagonal
parallel to the main diagonal. In other words, a Toeplitz matrix is a matrix
of the form

































t0 t1
. . .

. . .
. . . tn−2 tn−1

t−1 t0 t1
. . .

. . .
. . . tn−2

. . . t−1 t0 t1
. . .

. . .
. . .

. . .
. . . t−1 t0 t1

. . .
. . .

. . .
. . .

. . . t−1 t0 t1
. . .

t−n+2
. . .

. . .
. . . t−1 t0 t1

t−n+1 t−n+2
. . .

. . .
. . . t−1 t0

































.
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An n × n Toeplitz matrix is determined by its first row and column, and
hence by 2n− 1 scalars.

Circulant matrices are square Toeplitz matrices where each two subse-
quent row vectors vi and vi+1 have the following two properties: the last
entry of vi is the first entry of vi+1 and the first (n− 1) entries of vi are the
second (n−1) entries of vi+1. In other words, a circulant matrix is a matrix
of the form

































c0 c1
. . .

. . .
. . . cn−2 cn−1

cn−1 c0 c1
. . .

. . .
. . . cn−2

. . . cn−1 c0 c1
. . .

. . .
. . .

. . .
. . . cn−1 c0 c1

. . .
. . .

. . .
. . .

. . . cn−1 c0 c1
. . .

c2
. . .

. . .
. . . cn−1 c0 c1

c1 c2
. . .

. . .
. . . cn−1 c0

































,

and, therefore, it is determined by its first row.

1.2.2 Eigenvalues, singular values, and induced norms

We require the reader to be familiar with the notion of eigenvalue and of
simple eigenvalue, that is, an eigenvalue with algebraic and geometric multi-
plicity2 equal to 1. The set of eigenvalues of a matrix A ∈ Rn×n is called its
spectrum and is denoted by spec(A) ⊂ C. The singular values of the matrix
A ∈ Rn×n are the positive square roots of the eigenvalues of ATA.

We begin with a well-known property of the spectrum of a matrix.

Theorem 1.2 (Geršgorin disks). Let A be an n× n matrix. Then

spec(A) ⊂
⋃

i∈{1,...,n}

{

z ∈ C
∣

∣ ‖z − aii‖C ≤
n

∑

j=1,j 6=i

|aij |
}

.

Next, we review a few facts about normal matrices, their eigenvectors and
their singular values.

2The algebraic multiplicity of an eigenvalue is the multiplicity of the corresponding root of
the characteristic equation. The geometric multiplicity of an eigenvalue is the number of linearly
independent eigenvectors corresponding to the eigenvalue. The algebraic multiplicity is greater
than or equal to the geometric multiplicity.
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Lemma 1.3 (Normal matrices). For a matrix A ∈ Rn×n, the following
statements are equivalent:

(i) A is normal;

(ii) A has a complete orthonormal set of eigenvectors; and

(iii) A is unitarily similar to a diagonal matrix, that is, there exists a
unitary3 matrix U such that U∗AU is diagonal.

Lemma 1.4 (Singular values of a normal matrix). If a normal matrix
has eigenvalues {λ1, . . . , λn}, then its singular values are {|λ1|, . . . , |λn|}.

It is well known that real symmetric matrices are normal, are diagonaliz-
able by orthogonal matrices, and have real eigenvalues. Additionally, circu-
lant matrices are normal.

We conclude by defining the notion of induced norm of a matrix. For
p ∈ N∪{∞}, the p-induced norm of A ∈ Rn×n is

‖A‖p = max{‖Ax‖p | ‖x‖p = 1}.
One can see that

‖A‖1 = max
j∈{1,...,n}

n
∑

i=1

|aij |, ‖A‖∞ = max
i∈{1,...,n}

n
∑

j=1

|aij |,

‖A‖2 = max{σ | σ is a singular value of A}.

1.2.3 Spectral radius and convergent matrices

The spectral radius of a matrix A ∈ Rn×n is

ρ(A) = max{‖λ‖C | λ ∈ spec(A)}.
In other words, ρ(A) is the radius of the smallest disk centered at the origin
that contains the spectrum of A.

Lemma 1.5 (Induced norms and spectral radius). For any square
matrix A and in any norm p ∈ N∪{∞}, ρ(A) ≤ ‖A‖p.

We will often deal with matrices with an eigenvalue equal to 1 and all
other eigenvalues strictly inside the unit disk. Accordingly, we generalize the
notion of spectral radius as follows. For a square matrix A with ρ(A) = 1,
we define the essential spectral radius

ρess(A) = max{‖λ‖C | λ ∈ spec(A) \ {1}}. (1.2.1)

3A complex matrix U ∈ Cn×n is unitary if U−1 = U∗.
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Next, we will consider matrices with useful convergence properties.

Definition 1.6 (Convergent and semi-convergent matrices). A ma-
trix A ∈ Rn×n is

(i) semi-convergent if limℓ→+∞Aℓ exists; and

(ii) convergent if it is semi-convergent and limℓ→+∞Aℓ = 0. •

These two notions are characterized as follows.

Lemma 1.7 (Convergent and semi-convergent matrices). The square
matrix A is convergent if and only if ρ(A) < 1. Furthermore, A is semi-
convergent if and only if the following three properties hold:

(i) ρ(A) ≤ 1;

(ii) ρess(A) < 1, that is, 1 is an eigenvalue and 1 is the only eigenvalue
on the unit circle; and

(iii) the eigenvalue 1 is semisimple, that is, it has equal algebraic and
geometric multiplicity (possibly larger than one).

In other words, A is semi-convergent if and only if there exists a nonsin-
gular matrix T such that

A = T

[

Ik 0
0 B

]

T−1,

where B ∈ R(n−k)×(n−k) is convergent, that is, ρ(B) < 1. With this notation,
we have ρess(A) = ρ(B) and the algebraic and geometric multiplicity of the
eigenvalue 1 is k.

1.2.4 Perron–Frobenius theory

Positive and nonnegative matrices have useful spectral properties. In what
follows, the first theorem amounts to the original Perron’s Theorem for posi-
tive matrices and the following theorems are the extension due to Frobenius
for certain nonnegative matrices. We refer to (Horn and Johnson, 1985,
Chapter 8) for a detailed treatment.

Theorem 1.8 (Perron-Frobenius for positive matrices). If the square
matrix A is positive, then

(i) ρ(A) > 0;
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(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is strictly larger than
the magnitude of any other eigenvalue; and

(iii) ρ(A) has an eigenvector with positive components.

Requiring the matrix to be strictly positive is a key assumption that limits
the applicability of this theorem. It turns out that it is possible to obtain
the same results of the theorem under weaker assumptions.

Definition 1.9 (Irreducible matrix). A nonnegative matrix A ∈ Rn×n is
irreducible if, for any nontrivial partition J ∪K of the index set {1, . . . , n},
there exist j ∈ J and k ∈ K such that ajk 6= 0.

Remark 1.10 (Properties of irreducible matrices). An equivalent def-
inition of irreducibility is given as follows. A matrix A ∈ Rn×n is irreducible
if it is not reducible, and is reducible if either:

(i) n = 1 and A = 0; or

(ii) there exists a permutation matrix P ∈ Rn×n and a number r ∈
{1, . . . , n− 1} such that P TAP is block upper triangular with diag-
onal blocks of dimensions r × r and (n− r) × (n− r).

It is an immediate consequence that the property of irreducibility depends
upon only the patterns of zeros and nonzero elements of the matrix. •

We can now weaken the assumption in Theorem 1.8 and obtain a compa-
rable, but weaker, result for irreducible matrices.

Theorem 1.11 (Perron–Frobenius for irreducible matrices). If the
nonnegative square matrix A is irreducible, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, and it is simple; and

(iii) ρ(A) has an eigenvector with positive components.

In general, the spectral radius of a nonnegative irreducible matrix does
not need to be the only eigenvalue of maximum magnitude. For example, the

matrix

[

0 1
1 0

]

has eigenvalues {1,−1}. In other words, irreducible matrices

do indeed have weaker spectral properties than positive matrices. Therefore,
it remains unclear which nonnegative matrices have the same properties as
those stated for positive matrices in Theorem 1.8.

Definition 1.12 (Primitive matrix). A nonnegative square matrix A is
primitive if there exists k ∈ N such that Ak is positive. •
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It is easy to see that if a nonnegative square matrix is primitive, then it is
irreducible. In later sections we will provide a graph-theoretical characteri-
zation of primitive matrices; for now, we are finally in a position to sharpen
the results of Theorem 1.11.

Theorem 1.13 (Perron–Frobenius for primitive matrices). If the
nonnegative square matrix A is primitive, then

(i) ρ(A) > 0;

(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is strictly larger than
the magnitude of any other eigenvalue; and

(iii) ρ(A) has an eigenvector with positive components.

We conclude this section by noting the following convergence property
that is an immediate corollary to Lemma 1.7 and to Theorem 1.13.

Corollary 1.14. If the nonnegative square matrix A is primitive, then the
matrix ρ(A)−1A is semi-convergent.

1.3 DYNAMICAL SYSTEMS AND STABILITY THEORY

In this section, we introduce some basic concepts about dynamical and con-
trol systems; see, for example Sontag (1998) and Khalil (2002). We discuss
stability and attractivity notions as well as the invariance principle. We con-
clude with a treatment of set-valued systems and time-dependent systems.

1.3.1 State machines and dynamical systems

Here, we introduce three classes of dynamical and control systems: (i) state
machines or discrete-time discrete-space dynamical systems; (ii) discrete-
time continuous-space control systems; and (iii) continuous-time continuous-
space control systems.

We begin with our specific definition of state machine. A (deterministic,
finite) state machine is a tuple (X,U,X0, f), where X is a finite set called
the state space, U is a finite set called the input space, X0 ⊂ X is the set
of allowable initial states, and f : X × U → X is the evolution map. Given
an input sequence u : Z≥0 → U , the state machine evolution x : Z≥0 → X
starting from x(0) ∈ X0 is given by

x(ℓ+ 1) = f(x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

We will often refer to a state machine as a processor. Note that, in a state
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machine, both the state and the input spaces are finite or discrete. Often
times, we will find it useful to consider systems that evolve in continuous
space and that are time dependent. Let us then provide two additional
definitions in the following paragraphs.

A (time-dependent) discrete-time continuous-space control system is a tu-
ple (X,U,X0, f), where X is a d-dimensional space chosen among Rd, Sd,
and the Cartesian products Rd1 × Sd2 , for some d1 + d2 = d, U is a com-
pact subset of Rm containing 0m, X0 ⊂ X, and f : Z≥0 × X × U → X is
a continuous map. As before, the individual objects X, U , X0, and f are
termed the state space, input space, allowable initial states, and evolution
map, respectively. Given an input sequence u : Z≥0 → U , the evolution
x : Z≥0 → X of the dynamical system starting from x(0) ∈ X0 is given by

x(ℓ+ 1) = f(ℓ, x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

A (time-dependent) continuous-time continuous-space control system is a
tuple (X,U,X0, f), where X is a d-dimensional space chosen among Rd,
Sd, and the Cartesian products Rd1 × Sd2 , for some d1 + d2 = d, U is a
compact subset of Rm containing 0m, X0 ⊂ X, and f : R≥0 ×X ×U → TX
is a continuously differentiable map. The individual objects X, U , X0,
and f are termed the state space, input space, allowable initial states, and
control vector field, respectively. Given an input function u : R≥0 → U , the
evolution x : R≥0 → X of the dynamical system starting from x(0) ∈ X0 is
given by

ẋ(t) = f(t, x(t), u(t)), t ∈ R≥0.

We often consider the case when the control vector field can be written as
f(t, x, u) = f0(t, x) +

∑m
a=1 fa(t, x)ua, for some continuously differentiable

maps f0, f1, . . . , fm : R≥0 × X → TX. Each of these individual maps is
called a (time-dependent) vector field, and f is said to be a control-affine
vector field. The control vector field f is driftless if f(t, x,0m) = 0 for all
x ∈ X and t ∈ R≥0.

Finally, the term dynamical system denotes a control system that is not
subject to any external control action; this terminology is applicable both
in discrete and continuous time. Furthermore, we will sometimes neglect to
define a specific set of allowable initial states; in this case we mean that any
point in the state space is allowable as initial condition.
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1.3.2 Stability and attractivity notions

In this section, we consider a continuous-space dynamical system (X, f). We
first consider the discrete-time case and later we briefly present the analogous
continuous-time case. We study dynamical systems that are time-invariant.
In discrete time, a time-invariant system is simply described by an evolution
map of the form f : X → X.

Definition 1.15 (Equilibrium point). A point x∗ ∈ X is an equilibrium
point for the time-invariant dynamical system (X, f) if the constant curve
x : Z≥0 → X, defined by x(ℓ) = x∗ for all ℓ ∈ Z≥0, is an evolution of the
system. •

It can immediately be seen that a point x∗ is an equilibrium point if and
only if f(x∗) = x∗. We denote the set of equilibrium points of the dynamical
system by Equil(X, f).

Definition 1.16 (Trajectories and sets). Let (X, f) be a time-invariant
dynamical system and let W be a subset of X. Then:

(i) The set W is positively invariant for (X, f) if each evolution with
initial condition in W remains in W for all subsequent times.

(ii) A trajectory x : Z≥0 → X approaches a set W ⊂ X if, for every
neighborhood Y of W , there exists a time ℓ0 > 0 such that x(ℓ)
takes values in Y for all subsequent times ℓ ≥ ℓ0. In such a case, we
write x(ℓ) →W as ℓ→ +∞. •

In formal terms, W is positively invariant if x(0) ∈ W implies x(ℓ) ∈ W
for all ℓ ∈ Z≥0, where x : Z≥0 → X is the evolution of (X, f) starting from
x(0).

Definition 1.17 (Stability and attractivity). For a time-invariant dy-
namical system (X, f), a set S is:

(i) stable if, for any neighborhood Y of S, there exists a neighborhood
W of S such that every evolution of (X, f) with initial condition in
W remains in Y for all subsequent times;

(ii) unstable if it is not stable;

(iii) locally attractive if there exists a neighborhood Y of S such that
every evolution with initial condition in Y approaches the set S;
and

(iv) locally asymptotically stable if it is stable and locally attractive.
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Additionally, the set S is globally attractive if every evolution of the dynam-
ical system approaches it and it is globally asymptotically stable if it is stable
and globally attractive. •

Remark 1.18 (Continuous-time dynamical systems). It is straight-
forward to extend the previous definitions to the setting of continuous-time
continuous-space dynamical systems. These notions are illustrated in Fig-
ure 1.2. •

S

Y

W
S

Y

W
S

Y

W

Figure 1.2 Illustrations of stability, asymptotic stability, and instability.

1.3.3 Invariance principles

Before discussing various versions of the invariance principle, we begin with
a useful notion. Given a discrete-time time-invariant continuous-space dy-
namical system (X, f) and a set W ⊂ X, a function V : X → R is non-
increasing along f in W if V (f(x)) ≤ V (x) for all x ∈ W . (Such functions
are often referred to as Lyapunov functions.) In other words, if a function
V is non-increasing along f , then the composite function ℓ 7→ V (y(ℓ)) is
non-increasing for each evolution y of the dynamical system (X, f). The
following theorem exploits this fact to establish useful properties of the evo-
lutions of (X, f).

Theorem 1.19 (LaSalle Invariance Principle for discrete-time dy-
namical systems). Let (X, f) be a discrete-time time-independent dynam-
ical system. Assume that:

(i) there exists a closed set W ⊂ X that is positively invariant for
(X, f);

(ii) there exists a function V : X → R that is non-increasing along f
on W ;

(iii) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuous on W .
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Then each evolution with initial condition in W approaches a set of the form
V −1(c)∩S, where c is a real constant and S is the largest positively invariant
set contained in {w ∈W | V (f(w)) = V (w)}.

We refer to Section 1.8.1 for a discussion about the proof of this result.
Next, we present the continuous-time version of the invariance principle. In
other words, we now assume that (X, f) is a continuous-time time-invariant
continuous-space dynamical system.

We begin by revisiting the notion of non-increasing function. Given a
continuously differentiable function V : X → R, the Lie derivative of V
along f , denoted by LfV : X → R, is defined by

LfV (x) =
d

dt
V (γ(t))

∣

∣

∣

t=0
,

where the trajectory γ : ] − ε, ε[ → X satisfies γ̇(t) = f(γ(t)) and γ(0) = x.
If X = Rd, then we can write x in components (x1, . . . , xd) and we can give
the following explicit formula for the Lie derivative:

LfV (x) =
d

∑

i=1

∂V

∂xi
(x)fi(x).

Similar formulas can be obtained for more general state spaces. Note that,
given a set W ⊂ X, a function V : X → R is non-increasing along f in W
if LfV (x) ≤ 0 for all x ∈W .

Finally, we state the invariance principle for continuous-time systems.

Theorem 1.20 (LaSalle Invariance Principle for continuous-time
dynamical systems). Let (X, f) be a continuous-time time-independent
dynamical system. Assume that:

(i) there exists a closed set W ⊂ X that is positively invariant for
(X, f);

(ii) there exists a function V : X → R that is non-increasing along f
on W ;

(iii) all evolutions of (X, f) with initial conditions in W are bounded;
and

(iv) f and V are continuously differentiable4 on W .

Then, each evolution with initial condition in W approaches a set of the
form V −1(c) ∩ S, where c is a real constant and S is the largest positively
invariant set contained in {w ∈W | LfV (w) = 0}.

4It suffices that f be locally Lipschitz and V be continuously differentiable; see Cortés (2008a).
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1.3.4 Notions and results for set-valued systems

Next, we focus on a more sophisticated version of the LaSalle Invariance
Principle for more general dynamical systems, that is, dynamical systems
described by set-valued maps that allow for non-deterministic evolutions. To
do so, we need to present numerous notions, including set-valued dynamical
systems, closedness properties, and weak positive invariance.

Specifically, a discrete-time continuous-space set-valued dynamical system
(in short, set-valued dynamical system) is determined by a tuple (X,X0, T ),
where X is a d-dimensional space chosen among Rd, Sd, and the Cartesian
products Rd1 × Sd2 , for some d1 + d2 = d, X0 ⊂ X, and T : X ⇉ X is a
set-valued map. We assume that T assigns to each point x ∈ X a nonempty
set T (x) ⊂ X. The individual objects X, X0, and T are termed the state
space, allowable initial states, and evolution map, respectively. An evolution
of the dynamical system (X,X0, T ) is any trajectory x : Z≥0 → X satisfying

x(ℓ+ 1) ∈ T (x(ℓ)), ℓ ∈ Z≥0.

Figure 1.3 illustrates this notion. In particular, a (time-invariant) discrete-
time continuous-space dynamical system (X,X0, f) can be seen as a discrete-
time continuous-space set-valued dynamical system (X,X0, T ), where the
evolution set-valued map is just the singleton-valued map x 7→ T (x) =
{f(x)}.

Figure 1.3 A discrete-time continuous-space set-valued dynamical system. A sample evo-
lution is shown dashed.

Next, we introduce a notion of continuity for set-valued maps. The evolu-
tion map T is said to be closed at x ∈ X if, for any sequences {xk | k ∈ Z≥0}
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and {yk | k ∈ Z≥0} such that

lim
k→+∞

xk = x, lim
k→+∞

yk = y, and yk ∈ T (xk),

it holds that y ∈ T (x). The evolution set-valued map T is closed at W ⊂ X
if for any x ∈W , T is closed at x. Note that a continuous map f : X → X
is closed when viewed as a singleton-valued map.

(i) A set C ⊂ X is weakly positively invariant with respect to T if, for
any x ∈ C, there exists y ∈ C such that y ∈ T (x).

(ii) A set C ⊂ X is strongly positively invariant with respect to T if
T (x) ⊂ C for any x ∈ C.

A point x0 is said to be a fixed point of T if x0 ∈ T (x0). A continuous
function V : X → R is non-increasing along T in W ⊂ X if V (y) ≤ V (x)
for all x ∈W and y ∈ T (x).

We finally state and prove a general version of the invariance principle,
whose proof is presented in Section 1.8.1.

Theorem 1.21 (LaSalle Invariance Principle for set-valued dis-
crete-time dynamical systems). Let (X,X0, T ) be a discrete-time set-
valued dynamical system. Assume that:

(i) there exists a closed set W ⊂ X that is strongly positively invariant
for (X,X0, T );

(ii) there exists a function V : X → R that is non-increasing along T
on W ;

(iii) all evolutions of (X,X0, T ) with initial conditions in W are bounded;
and

(iv) T is nonempty and closed at W and V is continuous on W .

Then, each evolutions with initial condition in W approaches a set of the
form V −1(c)∩ S, where c is a real constant and S is the largest weakly pos-
itively invariant set contained in {w ∈ W | ∃w′ ∈ T (w) such that V (w′) =
V (w)}.

1.3.5 Notions and results for time-dependent systems

In this final subsection, we consider time-dependent discrete-time dynamical
systems and discuss uniform stability and convergence notions. We begin
with some uniform boundedness, stability, and attractivity definitions.
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In what follows, given a time-dependent discrete-time dynamical system
(X,X0, f), an evolution with initial condition in W at time ℓ0 ∈ Z≥0 is a
trajectory x : [ℓ0,+∞[ → X of the dynamical system (X,X0, f) defined by
the initial condition x(ℓ0) = x0, for some x0 ∈W . In other words, for time-
dependent systems we will often consider trajectories that begin at time ℓ0
not necessarily equal to zero.

Definition 1.22 (Uniformly bounded evolutions). A time-dependent
discrete-time dynamical system (X,X0, f) has uniformly bounded evolutions
if, given any bounded set Y , there exists a bounded set W such that every
evolution with initial condition in Y at any time ℓ0 ∈ Z≥0 remains in W for
all subsequent times ℓ ≥ ℓ0. •

Definition 1.23 (Uniform stability and attractivity notions). For a
time-dependent discrete-time dynamical system (X,X0, f), the set S is:

(i) uniformly stable if, for any neighborhood Y of S, there exists a
neighborhood W of S such that every evolution with initial condi-
tion in W at any time ℓ0 ∈ Z≥0 remains in Y for all subsequent
times ℓ ≥ ℓ0;

(ii) uniformly locally attractive if there exists a neighborhood Y of S
such that every evolution with initial condition in Y at any time ℓ0
approaches the set S in the following time-uniform manner:

for all ℓ0 ∈ Z≥0, for all x0 ∈ Y , and for all neighborhoods
W of S, there exists a single τ0 ∈ Z≥0 such that the
evolution x : [ℓ0,+∞[ → X defined by x(ℓ0) = x0 takes
value in W for all times ℓ ≥ ℓ0 + τ0; and

(iii) uniformly locally asymptotically stable if it is uniformly stable and
uniformly locally attractive.

Additionally, the set S is uniformly globally attractive if every evolution of
the dynamical system approaches the set in a time-uniform manner, and
it is uniformly globally asymptotically stable if it is uniformly stable and
uniformly globally attractive. •

With the same notation in the definition, the set S is (non-uniformly)
locally attractive if for all ℓ0 ∈ Z≥0, x0 ∈ Y , and neighborhoods W of S, the
evolution x : [ℓ0,+∞[ → X defined by x(ℓ0) = x0, takes value in W for all
times ℓ ≥ ℓ0 + τ0(ℓ0), for some τ0(ℓ0) ∈ Z≥0.

To establish uniform stability and attractivity results we will overapprox-
imate the evolution of the time-dependent dynamical system by considering
the larger set of evolutions of an appropriate set-valued dynamical system.
Given a time-dependent evolution map f : Z≥0×X → X, define a set-valued
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overapproximation map Tf : X ⇉ X by

Tf (x) = {f(ℓ, x) | ℓ ∈ Z≥0}.
With this notion we can state a useful result, whose proof is left to the
reader as an exercise.

Lemma 1.24 (Overapproximation Lemma). Consider a discrete-time
time-dependent dynamical system (X,X0, f):

(i) If x : [ℓ0,+∞[ → X is an evolution of the dynamical system (X, f),
then y : Z≥0 → X defined by y(ℓ) = x(ℓ+ ℓ0) is an evolution of the
set-valued overapproximation system (X,Tf ).

(ii) If the set S is locally attractive for the set-valued overapproximation
system (X,Tf ), then it is uniformly locally attractive for (X, f).

In other words, every evolution of the time-dependent dynamical system
from any initial time is an evolution of the set-valued overapproximation
system and, therefore, the set of trajectories of the set-valued overapproxi-
mation system contains the set of trajectories of the original time-dependent
system. Uniform attractivity is a consequence of attractivity for the time-
invariant set-valued overapproximation.

1.4 GRAPH THEORY

Here we present basic definitions about graph theory, following the treat-
ments in the literature; see, for example Biggs (1994), Godsil and Royle
(2001), and Diestel (2005).

A directed graph—in short, digraph—of order n is a pair G = (V,E),
where V is a set with n elements called vertices (or nodes) and E is a set
of ordered pair of vertices called edges. In other words, E ⊆ V × V . We
call V and E the vertex set and edge set, respectively. When convenient,
we let V (G) and E(G) denote the vertices and edges of G, respectively. For
u, v ∈ V , the ordered pair (u, v) denotes an edge from u to v.

An undirected graph—in short, graph—consists of a vertex set V and of a
set E of unordered pairs of vertices. For u, v ∈ V and u 6= v, the set {u, v}
denotes an unordered edge. A digraph is undirected if (v, u) ∈ E anytime
(u, v) ∈ E. It is possible and convenient to identify an undirected digraph
with the corresponding graph; vice versa, the directed version of a graph
(V,E) is the digraph (V ′, E′) with the property that (u, v) ∈ E′ if and only
if {u, v} ∈ E. In what follows, our convention is to allow self-loops in both
graphs and digraphs.
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A digraph (V ′, E′) is a subgraph of a digraph (V,E) if V ′ ⊂ V and E′ ⊂ E;
additionally, a digraph (V ′, E′) is a spanning subgraph if it is a subgraph and
V ′ = V . The subgraph of (V,E) induced by V ′ ⊂ V is the digraph (V ′, E′),
where E′ contains all edges in E between two vertices in V ′. For two digraphs
G = (V,E) and G′ = (V ′, E′), the intersection and union of G and G′ are
defined by

G∩G′ = (V ∩V ′, E ∩E′),

G∪G′ = (V ∪V ′, E ∪E′).

Analogous definitions may be given for graphs.

In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor of
v, and v is called an out-neighbor of u. We let N in

G (v) (resp., N out
G (v))

denote the set of in-neighbors, (resp. the set of out-neighbors) of v in the
digraph G. We will drop the subscript when the graph G is clear from the
context. The in-degree and out-degree of v are the cardinality of N in(v) and
N out(v), respectively. A digraph is topologically balanced if each vertex has
the same in- and out-degrees (even if distinct vertices have distinct degrees).
Likewise, in an undirected graph G, the vertices u and v are neighbors if
{u, v} is an undirected edge. We let NG(v) denote the set of neighbors of
v in the undirected graph G. As in the directed case, we will drop the
subscript when the graph G is clear from the context. The degree of v is the
cardinality of N (v).

Remark 1.25 (Additional notions). For a digraph G = (V,E), the re-
verse digraph rev(G) has vertex set V and edge set rev(E) composed of all
edges in E with reversed direction. A digraph G = (V,E) is complete if
E = V × V . A clique (V ′, E′) of a digraph (V,E) is a subgraph of (V,E)
which is complete, that is, such that E′ = V ′ × V ′. Note that a clique is
fully determined by its set of vertices, and hence there is no loss of precision
in denoting it by V ′. A maximal clique V ′ of an edge of a digraph is a clique
of the digraph with the following two properties: it contains the edge, and
any other subgraph of the digraph that strictly contains (V ′, V ′×V ′) is not
a clique. •

1.4.1 Connectivity notions

Let us now review some basic connectivity notions for digraphs and graphs.
We begin with the setting of undirected graphs because of its simplicity.

A path in a graph is an ordered sequence of vertices such that any pair
of consecutive vertices in the sequence is an edge of the graph. A graph is
connected if there exists a path between any two vertices. If a graph is not
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connected, then it is composed of multiple connected components, that is,
multiple connected subgraphs. A path is simple if no vertices appear more
than once in it, except possibly for initial and final vertex. A cycle is a
simple path that starts and ends at the same vertex. A graph is acyclic if it
contains no cycles. A connected acyclic graph is a tree. A forest is a graph
that can be written as the disjoint union of trees. Trees have interesting
properties: for example, G = (V,E) is a tree if and only if G is connected
and |E| = |V | − 1. Alternatively, G = (V,E) is a tree if and only if G is
acyclic and |E| = |V | − 1. Figure 1.4 illustrates these notions.

Figure 1.4 An illustration of connectivity notions on a graph. The graph has two con-
nected components. The leftmost connected component is a tree, while the
rightmost connected component is a cycle.

Next, we generalize these notions to the case of digraphs. A directed path
in a digraph is an ordered sequence of vertices such that any ordered pair of
vertices appearing consecutively in the sequence is an edge of the digraph.
A cycle in a digraph is a directed path that starts and ends at the same
vertex and that contains no repeated vertex except for the initial and the
final vertex. A digraph is acyclic if it contains no cycles. In an acyclic graph,
every vertex of in-degree 0 is named a source, and every vertex of out-degree
0 is named a sink. Every acyclic digraph has at least one source and at least
one sink. Figure 1.5 illustrates these notions.

(a) (b)

Figure 1.5 Illustrations of connectivity notions on a digraph: (a) shows an acyclic digraph
with one sink and two sources; (b) shows a directed path which is also a cycle.

The set of cycles of a directed graph is finite. A directed graph is aperiodic
if there exists no k > 1 that divides the length of every cycle of the graph.
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In other words, a digraph is aperiodic if the greatest common divisor of
the lengths of its cycles is one. A digraph is periodic if it is not aperiodic.
Figure 1.6 shows examples of a periodic and an aperiodic digraph.

(a) (b)

Figure 1.6 (a) A periodic digraph. (b) An aperiodic digraph with cycles of length 2 and 3.

A vertex of a digraph is globally reachable if it can be reached from any
other vertex by traversing a directed path. A digraph is strongly connected
if every vertex is globally reachable. The decomposition of a digraph into
its strongly connected components and the notion of condensation digraph
are discussed in Exercise E1.13.

A directed tree (sometimes called a rooted tree) is an acyclic digraph with
the following property: there exists a vertex, called the root, such that any
other vertex of the digraph can be reached by one and only one directed
path starting at the root. In a directed tree, every in-neighbor of a vertex is
called a parent and every out-neighbor is called a child. Two vertices with
the same parent are called siblings. A successor of a vertex u is any other
node that can be reached with a directed path starting at u. A predecessor of
a vertex v is any other node such that a directed path exists starting at it and
reaching v. A directed spanning tree, or simply a spanning tree, of a digraph
is a spanning subgraph that is a directed tree. Clearly, a digraph contains a
spanning tree if and only if the reverse digraph contains a globally reachable
vertex. A (directed) chain is a directed tree with exactly one source and one
sink. A (directed) ring digraph is the cycle obtained by adding to the edge
set of a chain a new edge from its sink to its source. Figure 1.7 illustrates
some of these notions.

The proof of the following result is given in Section 1.8.2.

Lemma 1.26 (Connectivity in topologically balanced digraphs). Let
G be a digraph. The following statements hold:

(i) if G is strongly connected, then it contains a globally reachable vertex
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Figure 1.7 From left to right, tree, directed tree, chain, and ring digraphs.

and a spanning tree; and

(ii) if G is topologically balanced and contains either a globally reach-
able vertex or a spanning tree, then G is strongly connected and is
Eulerian.5

Given a digraph G = (V,E), an in-neighbor of a nonempty set of nodes
U is a node v ∈ V \ U for which there exists an edge (v, u) ∈ E for some
u ∈ U .

Lemma 1.27 (Disjoint subsets and spanning trees). Given a digraph
G with at least two nodes, the following two properties are equivalent:

(i) G has a spanning tree; and

(ii) for any pair of nonempty disjoint subsets U1, U2 ⊂ V , either U1 has
an in-neighbor or U2 has an in-neighbor.

U1

U2

(a)

U1

U2

(b)

Figure 1.8 An illustration of Lemma 1.27. The root of the spanning tree is plotted in
gray. In (a), the root is outside the sets U1 and U2. Because these sets are
non-empty, there exists a directed path from the root to a vertex in each one
of these sets. Therefore, both U1 and U2 have in-neighbors. In (b), the root is
contained in U1. Because U2 is non-empty, there exists a directed path from
the root to a vertex in U2, and, therefore, U2 has in-neighbors. The case when
the root belongs to U2 is treated analogously.

5A graph is Eulerian if it has a cycle that visits all the graph edges exactly once.
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We will postpone the proof to Section 1.8.2. The result is illustrated in
Figure 1.8. We can also state the result in terms of global reachability:
G has a globally reachable node if and only if, for any pair of nonempty
disjoint subsets U1, U2 ⊂ V , either U1 has an out-neighbor or U2 has an
out-neighbor. We let the reader give a proper definition of the out-neighbor
of a set.

1.4.2 Weighted digraphs

A weighted digraph is a triplet G = (V,E,A), where the pair (V,E) is a
digraph with nodes V = {v1, . . . , vn}, and where the nonnegative matrix
A ∈ Rn×n

≥0 is a weighted adjacency matrix with the following property: for
i, j ∈ {1, . . . , n}, the entry aij > 0 if (vi, vj) is an edge of G, and aij = 0
otherwise. In other words, the scalars aij , for all (vi, vj) ∈ E, are a set of
weights for the edges of G. Note that the edge set is uniquely determined
by the weighted adjacency matrix and it can therefore be omitted. When
convenient, we denote the adjacency matrix of a weighted digraph G by
A(G). Figure 1.9 shows an example of a weighted digraph.

1

1 2

3
2

1

4

2

6

7

64

Figure 1.9 A weighted digraph with natural weights.

A digraph G = (V,E) can be naturally thought of as a weighted digraph
by defining the weighted adjacency matrix A ∈ {0, 1}n×n as

aij =

{

1, if (vi, vj) ∈ E,

0, otherwise,
(1.4.1)

where V = {v1, . . . , vn}. The adjacency matrix of a graph is the adjacency
matrix of the directed version of the graph. Reciprocally, given a weighted
digraph G = (V,E,A), we refer to the digraph (V,E) as the unweighted ver-
sion of G and to its associated adjacency matrix as the unweighted adjacency
matrix. A weighted digraph is undirected if aij = aji for all i, j ∈ {1, . . . , n}.
Clearly, G is undirected if and only if A(G) is symmetric.
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Numerous concepts introduced for digraphs remain equally valid for the
case of weighted digraphs, including the connectivity notions and the defi-
nitions of in- and out-neighbors.

Finally, we generalize the notions of in- and out-degree to weighted di-
graphs. In a weighted digraph G = (V,E,A) with V = {v1, . . . , vn}, the
weighted out-degree and the weighted in-degree of vertex vi are defined by,
respectively,

dout(vi) =
n

∑

j=1

aij , and din(vi) =
n

∑

j=1

aji.

The weighted digraph G is weight-balanced if dout(vi) = din(vi) for all vi ∈ V .
The weighted out-degree matrix Dout(G) and the weighted in-degree matrix
Din(G) are the diagonal matrices defined by

Dout(G) = diag(A1n), and Din(G) = diag(AT1n).

That is, (Dout(G))ii = dout(vi) and (Din(G))ii = din(vi), respectively.

1.4.3 Distances on digraphs and weighted digraphs

We first present a few definitions for unweighted digraphs. Given a digraph
G, the (topological) length of a directed path is the number of the edges
composing it. Given two vertices u and v in the digraph G, the distance
from u to v, denoted distG(u, v), is the smallest length of any directed path
from u to v, or +∞ if there is no directed path from u to v. That is,

distG(u, v) = min
(

{length(p) | p is a directed path from u to v}∪{+∞}
)

.

Given a vertex v of a digraph G, the radius of v in G is the maximum of all
the distances from v to any other vertex in G. That is,

radius(v,G) = max{distG(v, u) | u ∈ V (G)}.
If T is a directed tree and v is its root, then the depth of T is radius(v, T ).
Finally, the diameter of the digraph G is

diam(G) = max{distG(u, v) | u, v ∈ V (G)}.
These definitions lead to the following simple results:

(i) radius(v,G) ≤ diam(G) for all vertices v of G;

(ii) G contains a spanning tree rooted at v if and only if radius(v,G) <
+∞; and

(iii) G is strongly connected if and only if diam(G) < +∞.
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The definitions of path length, distance between vertices, radius of a vertex,
and diameter of a digraph can be easily applied to undirected graphs.

Next, we consider weighted digraphs. Given two vertices u and v in the
weighted digraph G, the weighted distance from u to v, denoted wdistG(u, v),
is the smallest weight of any directed path from u to v, or +∞ if there is no
directed path from u to v. That is,

wdistG(u, v) = min
(

{weight(p) | p is a directed path from u to v}∪{+∞}
)

.

Here, the weight of a subgraph of a weighted digraph is the sum of the
weights of all the edges of the subgraph. Note that when a digraph is thought
of as a weighted digraph (with the unweighted adjacency matrix (1.4.1)), the
notions of weight and weighted distance correspond to the usual notions of
length and distance, respectively. We leave it the reader to provide the
definitions of weighted radius, weighted depth, and weighted diameter.

1.4.4 Graph algorithms

In this section, we present a few algorithms defined on graphs. We present
only high-level descriptions and we refer to Cormen et al. (2001) for a com-
prehensive discussion including a detailed treatment of computationally ef-
ficient data structures and algorithmic implementations.

1.4.4.1 Breadth-first spanning tree

Let v be a vertex of a digraph G with radius(v,G) < +∞. A breadth-first
spanning (BFS) tree of G with respect to v, denoted TBFS, is a spanning
directed tree rooted at v that contains a shortest path from v to every other
vertex of G. (Here, a shortest path is one with the shortest topological
length.) Let us provide the BFS algorithm that, given a digraph G of
order n and a vertex v with radius(v,G) < +∞, computes a BFS tree TBFS

rooted at v:

[Informal description] Initialize a subgraph to contain only the
root v. Repeat radius(v,G) times the following instructions:
attach to the subgraph all out-neighbors of the subgraph as well
as a single connecting edge for each out-neighbor. The final
subgraph is the desired directed tree.

The algorithm is formally stated as follows:
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function BFS(G, v)

1: (V1, E1) := ({v}, ∅)
2: for k = 2 to radius(v,G) do
3: find all vertices w1, . . . , wm not in Vk−1 that are out-neighbors of

some vertex in Vk−1 and, for j ∈ {1, . . . ,m}, let ej be an edge
connecting a vertex in Vk−1 to wj

4: Vk := Vk−1 ∪{w1, . . . , wm}
5: Ek := Ek−1 ∪{e1, . . . , em}
6: return (Vn, En)

Note that the output of this algorithm is not necessarily unique, since the
choice of edges at step 3: in the algorithm is not unique. Figure 1.10 shows
an execution of the BFS algorithm.

Figure 1.10 Execution of the BFS algorithm. In the leftmost frame, vertex v is colored
in red. The other frames correspond to incremental additions of vertices and
edges as specified by the function BFS. The output of the algorithm is a
BFS tree of the digraph. The BFS tree is represented in the last frame with
vertices and edges colored in red.

Some properties of the BFS algorithm are characterized as follows.

Lemma 1.28 (BFS tree). For a digraph G with a vertex v, any digraph
T computed by the BFS algorithm, T ∈ BFS(G, v), has the following
properties:

(i) T is a directed tree with root v;

(ii) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w ∈ T
and distG(v, w) = distT (v, w); and

(iii) if G contains a spanning tree rooted at v, then T is spanning too
and therefore, T is a BFS tree of G.

We leave the proof to the reader. The key property of the algorithm is that
(Vk, Ek), k ∈ {1, . . . , n}, is a sequence of directed trees with the property
that (Vk, Ek) ⊂ (Vk+1, Ek+1), for k ∈ {1, . . . , n− 1}.
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1.4.4.2 The depth-first spanning tree

Next, we define the DFS algorithm that, given a digraph G and a vertex v
with radius(v,G) < +∞, computes what we term a depth-first spanning
(DFS) tree TDFS rooted at v:

[Informal description] Visit all nodes of the graph recording the
traveled edges to form the desired tree. Visit the nodes in the
following recursive way: (1) as long as a node has an unvisited
child, visit it; (2) when the node has no more unvisited children,
then return to its parent (and recursively attempt to visit its
unvisited children).

The algorithm is formally stated as a recursive procedure, as follows:

function DFS(G, v)

1: (Vvisited, Evisited) := ({v}, ∅)
2: DFS-Visit(G, v)
3: return (Vvisited, Evisited)

function DFS-Visit(G,w)

1: for u out-neighbor of w do
2: if u does not belong to Vvisited then
3: Vvisited := Vvisited ∪{u}
4: Evisited := Evisited ∪{(w, u)}
5: DFS-Visit(G, u)

Note that the output of this algorithm is not necessarily unique, since the
order in which the vertices are chosen in step 1: of DFS-Visit is not unique.
Any digraph T computed by the DFS algorithm, T ∈ DFS(G, v), is a
directed spanning tree with root v. Figure 1.11 shows an execution of the
algorithm.

Some properties of the DFS algorithm are characterized as follows.

Lemma 1.29 (DFS tree). For a digraph G with a vertex v, any digraph
T computed by the DFS algorithm, T ∈ DFS(G, v), has the following
properties:

(i) T is a directed tree with root v; and

(ii) if G contains a spanning tree rooted at v, then T is spanning too.

Note that both BFS and DFS trees are uniquely defined once a lexico-
graphic order is introduced for the children of a node.

29

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

Figure 1.11 Execution of the DFS algorithm. In the top leftmost frame, vertex v is
colored in red. The other frames correspond to incremental additions of
vertices and edges as specified by the function DFS. The output of the
algorithm is a DFS tree of the digraph. The DFS tree is represented in the
last frame, with vertices and edges in red.

1.4.4.3 The shortest-paths tree in weighted digraphs via the Dijkstra algorithm

Finally, we focus on weighted digraphs and on the notion of weighted path
length. Given a weighted digraph G of order n with weighted adjacency
matrix A and a vertex v with radius(v,G) < +∞, a shortest-paths tree of G
with respect to v, denoted Tshortest-paths, is a spanning directed tree rooted
at v that contains a (weighted) shortest path from v to every other vertex
of G. This tree differs from the BFS tree defined above because here the
path length is measured using the digraph weights.

We now provide the Dijkstra algorithm that, given a digraph G of
order n and a vertex v with radius(v,G) < +∞, computes a shortest-paths
tree Tshortest-paths rooted at v:

[Informal description] Incrementally construct a tree that con-
tains only shortest paths. In each round, add to the tree (1) the
node that is closest to the source and is not yet in the tree, and
(2) the edge corresponding to the shortest path. The weighted
distance to the source (required to perform step (1)) is computed
via an array of distance estimates that is updated as follows:
when a node is added to the tree, the distance estimates of all
its out-neighbors are updated.

The algorithm is formally stated as follows:

function Dijkstra
(

(V,E,A), v
)

1: Tshortest-paths := ∅
% Initialize estimated distances and estimated parent nodes

2: for u ∈ V do
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3: dist(u) :=

{

0, u = v,

+∞, otherwise.

4: parent(u) := u
% Main loop to grow the tree and update estimates

5: while (Tshortest-paths does not contain all vertices) do
6: find vertex u outside Tshortest-paths with smallest dist(u)
7: add to Tshortest-paths the vertex u
8: if u 6= v, add to Tshortest-paths the edge (parent(u), u)
9: for each node w that is an out-neighbor of u in (V,E,A) do

10: if dist(w) > dist(u) + auw then
11: dist(w) := dist(u) + auw

12: parent(w) := u
13: return Tshortest-paths

Note that the output of this algorithm is not necessarily unique, since the
choice of vertex at step 6: in the algorithm is not unique. Figure 1.12 shows
an execution of the the Dijkstra algorithm.
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Figure 1.12 Execution of the Dijkstra algorithm on the weighted digraph plotted in
Figure 1.9. In the top leftmost frame, vertex v is colored in gray. The other
frames correspond to incremental additions of vertices and edges as specified
by the function Dijkstra. The output of the algorithm is a shortest-paths
tree of the digraph rooted at v. This tree is represented in the last frame with
vertices and edges colored in gray.

The following properties of the Dijkstra algorithm mirror those of the
BFS algorithm in Lemma 1.28.

Lemma 1.30 (Dijkstra algorithm). For a weighted digraph G with a
vertex v, any digraph T computed by the Dijkstra algorithm, T ∈
Dijkstra(G, v), has the following properties:
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(i) T is a directed tree with root v;

(ii) T contains a shortest path from v to any other vertex reachable from
v inside G, that is, if there is a path in G from v to w, then w ∈ T
and wdistG(v, w) = wdistT (v, w); and

(iii) if G contains a spanning tree rooted at v, then T is spanning too,
and therefore, T is a shortest-paths tree of G.

1.4.4.4 On combinatorial optimization problems

We conclude this section on graph algorithms with a brief mention of classic
optimization problems defined on graphs. Standard references on combi-
natorial optimization include Vazirani (2001) and Korte and Vygen (2005).
Given a weighted directed graph G, classical combinatorial optimization
problems include the following:

Minimum-weight spanning tree. A minimum-weight spanning tree of
G, denoted MST, is a spanning tree with the minimum possible weight.
In order for the MST to exist, G must contain a spanning tree. If all
the weights of the individual edges are different, then the MST is
unique.

Traveling salesperson problem. A traveling salesperson tour of G, de-
noted TSP, is a cycle that passes through all the nodes of the digraph
and has the minimum possible weight. In order for the TSP to exist,
G must contain a cycle through all nodes.

Multicenter optimization problems. Given a weighted digraph G with
vertices V = {v1, . . . , vn} and a set U = {u1, . . . , uk} ⊂ V , the
weighted distance from v ∈ V to the set U is the smallest weighted
distance from v to any vertex in {u1, . . . , uk}. We now consider the
cost functions Hmax,HΣ : V k → R defined by

Hmax(u1, . . . , uk) = max
i∈{1,...,n}

min
h∈{1,...,k}

wdistG(vi, uh),

HΣ(u1, . . . , uk) =
n

∑

i=1

min
h∈{1,...,k}

wdistG(vi, uh).

The k-center problem and the k-median problem consist of finding a set
of vertices {u1, . . . , uk} that minimizes the k-center function Hmax and
the k-median function HΣ, respectively. We refer to Vazirani (2001)
for a discussion of the k-center and k-median problems (as well as
the more general uncapacited facility location problem) over complete
undirected graphs with edge costs satisfying the triangle inequality.
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The Euclidean versions of these combinatorial optimization problems refer
to the situation where one considers a weighted complete digraph whose
vertex set is a point set in Rd, d ∈ N, and whose weight map assigns to each
edge the Euclidean distance between the two nodes connected by the edge.

1.4.5 Algebraic graph theory

Algebraic graph theory (Biggs, 1994; Godsil and Royle, 2001) is the study
of matrices defined by digraphs: in this section, we expose two topics. First,
we study the equivalence between properties of graphs and of their associ-
ated adjacency matrices. We also specify how to associate a digraph to a
nonnegative matrix. Second, we introduce and characterize the Laplacian
matrix of a weighted digraph.

We begin by studying adjacency matrices. Note that the adjacency matrix
of a weighted digraph is nonnegative and, in general, not stochastic. The
following lemma expands on this point.

Lemma 1.31 (Weight-balanced digraphs and doubly stochastic ad-
jacency matrices). Let G be a weighted digraph of order n with weighted
adjacency matrix A and weighted out-degree matrix Dout. Define the matrix

F =

{

D−1
outA, if each out-degree is strictly positive,

(In +Dout)
−1(In +A), otherwise.

Then

(i) F is row-stochastic; and

(ii) F is doubly stochastic if G is weight-balanced and the weighted degree
is constant for all vertices.

Proof. Consider first the case when each vertex has an outgoing edge so that
Dout is invertible. We first note that diag(v)−1v = 1n, for each v ∈ (R\{0})n.
Therefore

(

D−1
outA

)

1n = diag(A1n)−1
(

A1n

)

= 1n,

which proves (i). Furthermore, if Dout = Din = dIn for some d ∈ R>0, then

(

D−1
outA

)T
1n =

1

d

(

AT1n

)

= D−1
in

(

AT1n

)

= diag(AT1n)−1
(

AT1n

)

= 1n,

which proves (ii). Finally, if (V,E,A) does not have outgoing edges at each
vertex, then apply the statement to the weighted digraph (V,E ∪{(i, i) | i ∈
{1, . . . , n}}, A+ In). �
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The next result characterizes the relationship between the adjacency ma-
trix and directed paths in the digraph.

Lemma 1.32 (Directed paths and powers of the adjacency matrix).
Let G be a weighted digraph of order n with weighted adjacency matrix A,
with unweighted adjacency matrix A0,1 ∈ {0, 1}n×n, and possibly with self-
loops. For all i, j, k ∈ {1, . . . , n}

(i) the (i, j) entry of Ak
0,1 equals the number of directed paths of length

k (including paths with self-loops) from node i to node j; and

(ii) the (i, j) entry of Ak is positive if and only if there exists a directed
path of length k (including paths with self-loops) from node i to
node j.

Proof. The second statement is a direct consequence of the first. The first
statement is proved by induction. The statement is clearly true for k = 1.
Next, we assume the statement is true for k ≥ 1 and we prove it for k + 1.
By assumption, the entry (Ak)ij equals the number of directed paths from
i to j of length k. Note that each path from i to j of length k + 1 identifies
(1) a unique node ℓ such that (i, ℓ) is an edge of G and (2) a unique path
from ℓ to j of length k. We write Ak+1 = AAk in components as

(Ak+1)ij =
n

∑

ℓ=1

Aiℓ(A
k)ℓj .

Therefore, it is true that the entry (Ak+1)ij equals the number of directed
paths from i to j of length k+1. This concludes the induction argument. �

The following proposition characterizes in detail the relationship between
various connectivity properties of the digraph and algebraic properties of
the adjacency matrix. The result is illustrated in Figure 1.13 and its proof
is postponed until Section 1.8.3.

Proposition 1.33 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix). Let G be a weighted digraph
of order n with weighted adjacency matrix A. The following statements are
equivalent:

(i) G is strongly connected;

(ii) A is irreducible; and

(iii)
∑n−1

k=0 A
k is positive.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:
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1

2

3

Figure 1.13 An illustration of Proposition 1.33. Even though vertices 2 and 3 are globally
reachable, the digraph is not strongly connected because vertex 1 has no
in-neighbor other than itself. Therefore, the associated adjacency matrix
A = (aij) with (a1j) = 13, (a2j) = (a3j) = (0, 1, 1), is reducible.

(iv) the jth node of G is globally reachable; and

(v) the jth column of
∑n−1

k=0 A
k has positive entries.

Stronger statements can be given for digraphs with self-loops.

Proposition 1.34 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix: cont’d). Let G be a weighted
digraph of order n with weighted adjacency matrix A and with self-loops at
each node. The following statements are equivalent:

(iv) G is strongly connected; and

(v) An−1 is positive.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:

(iv) the jth node of G is globally reachable; and

(v) the jth column of An−1 has positive entries.

Next, we characterize the relationship between irreducible aperiodic di-
graphs and primitive matrices (recall Definition 1.12). We will postpone the
proof to Section 1.8.3.

Proposition 1.35 (Strongly connected and aperiodic digraph and
primitive adjacency matrix). Let G be a weighted digraph of order n with
weighted adjacency matrix A. The following two statements are equivalent:

(i) G is strongly connected and aperiodic; and

(ii) A is primitive, that is, there exists k ∈ N such that Ak is positive.
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This concludes our study of adjacency matrices associated to weighted
digraphs. Next, we emphasize how all results obtained so far have analogs
that hold when the original object is a nonnegative matrix, instead of a
weighted digraph.

Remark 1.36 (From a nonnegative matrix to its associated di-
graphs). Given a nonnegative n × n matrix A, its associated weighted di-
graph is the weighted digraph with nodes {1, . . . , n}, and weighted adja-
cency matrix A. The unweighted version of this weighted digraph is called
the associated digraph. The following statements are analogs of the previous
lemmas:

(i) if A is stochastic, then its associated digraph has weighted out-
degree matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted digraph is
weight-balanced and, additionally, both in-degree and out-degree
matrices are equal to In; and

(iii) A is irreducible if and only if its associated weighted digraph is
strongly connected. •

So far, we have analyzed in detail the properties of adjacency matrices.
We conclude this section by studying a second relevant matrix associated
to a digraph, called the Laplacian matrix. The Laplacian matrix of the
weighted digraph G is

L(G) = Dout(G) −A(G).

Some immediate consequences of this definition are the following:

(i) L(G)1n = 0n, that is, 0 is an eigenvalue of L(G) with eigenvector
1n;

(ii) G is undirected if and only if L(G) is symmetric; and

(iii) L(G) equals the Laplacian matrix of the digraph obtained by adding
to or removing from G any self-loop with arbitrary weight.

Further properties are established as follows.

Theorem 1.37 (Properties of the Laplacian matrix). Let G be a
weighted digraph of order n. The following statements hold:

(i) all eigenvalues of L(G) have nonnegative real part (thus, if G is
undirected, then L(G) is symmetric positive semidefinite);

(ii) if G is strongly connected, then rank(L(G)) = n− 1, that is, 0 is a
simple eigenvalue of L(G);
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(iii) G contains a globally reachable vertex if and only if rank(L(G)) =
n− 1;

(iv) the following three statements are equivalent:

(a) G is weight-balanced;

(b) 1T
nL(G) = 0T

n ; and

(c) L(G) + L(G)T is positive semidefinite.

1.5 DISTRIBUTED ALGORITHMS ON SYNCHRONOUS

NETWORKS

Here, we introduce a synchronous network as a group of processors with
the ability to exchange messages and perform local computations. What we
present is a basic classic model studied extensively in the distributed algo-
rithms literature. Our treatment is directly adopted with minor variations,
from the texts by Lynch (1997) and Peleg (2000).

1.5.1 Physical components and computational models

Loosely speaking, a synchronous network is a group of processors, or nodes,
that possess a local state, exchange messages along the edges of a digraph,
and compute an update to their local state based on the received messages.
Each processor alternates the two tasks of exchanging messages with its
neighboring processors and of performing a computation step. Let us begin
by describing what constitutes a network.

Definition 1.38 (Network). The physical component of a synchronous
network S is a digraph (I, Ecmm), where:

(i) I = {1, . . . , n} is called the set of unique identifiers (UIDs); and

(ii) Ecmm is a set of directed edges over the vertices {1, . . . , n}, called
the communication links. •

In general, the set of unique identifiers does not need to be n consecutive
natural numbers, but we adopt this convention for simplicity. The set Ecmm

models the topology of the communication service among the nodes: for
i, j ∈ {1, . . . , n}, processor i can send a message to processor j if the directed
edge (i, j) is present in Ecmm. Note that, unlike the standard treatments
in Lynch (1997) and Peleg (2000), we do not assume the digraph to be
strongly connected; the required connectivity assumption will be specified
on a case-by-case basis.
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Next, we discuss the state and the algorithms that each processor possesses
and executes, respectively. By convention, we let the superscript [i] denote
any quantity associated with the node i.

Definition 1.39 (Distributed algorithm). A distributed algorithm DA
for a network S consists of the sets

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆W [i], i ∈ I, sets of allowable initial values;

and of the maps

(i) msg[i] : W [i] × I → A, i ∈ I, called message-generation functions;
and

(ii) stf[i] : W [i] × An →W [i], i ∈ I, called state-transition functions.

If W [i] = W , msg[i] = msg, and stf[i] = stf for all i ∈ I, then DA is said to

be uniform and is described by a tuple (A,W, {W [i]
0 }i∈I ,msg, stf). •

Now, with all elements in place, we can explain in more detail how a
synchronous network executes a distributed algorithm (see Figure 1.14).
The state of processor i is a variable w[i] ∈ W [i], initially set equal to an

Transmit

and

receive

Update

processor

state

Figure 1.14 The execution of a distributed algorithm by a synchronous network.

allowable value in W
[i]
0 . At each time instant ℓ ∈ Z≥0, processor i sends

to each of its out-neighbors j in the communication digraph (I, Ecmm) a
message (possibly the null message) computed by applying the message-
generation function msg[i] to the current values of its state w[i] and to the
identity j. Subsequently, but still at time instant ℓ ∈ Z≥0, processor i
updates the value of its state w[i] by applying the state-transition function
stf[i] to the current value of w[i] and to the messages it receives from its
in-neighbors. At each round, the first step is transmission and the second
one is computation. These notions are formalized in the following definition.
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Definition 1.40 (Network evolution). Let DA be a distributed algo-
rithm for the network S. The evolution of (S,DA) from initial conditions

w
[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of trajectories w[i] : Z≥0 → W [i], i ∈ I,

satisfying

w[i](ℓ) = stf[i](w[i](ℓ− 1), y[i](ℓ)),

where w[i](−1) = w
[i]
0 , i ∈ I, and where the trajectory y[i] : Z≥0 → An

(describing the messages received by processor i) has components y
[i]
j (ℓ), for

j ∈ I, given by

y
[i]
j (ℓ) =

{

msg[j](w[j](ℓ− 1), i), if (j, i) ∈ Ecmm,

null, otherwise.

Let ℓ 7→ w(ℓ) = (w[1](ℓ), . . . , w[n](ℓ)) denote the collection of trajectories. •

We conclude this section with two sets of remarks. We first discuss some
aspects of our communication model that have a large impact on the subse-
quent development. We then collect a few general comments about control
structures and failure modes relevant in the study of distributed algorithms
on networks.

Remarks 1.41 (Aspects of the communication model).

(i) The network S and the algorithm DA are referred to as synchronous
because the communications between all processors takes place at
the same time for all processors.

(ii) Communication is modeled as a so-called “point-to-point” service: a
processor can specify different messages for different out-neighbors
and knows the processor identity corresponding to any incoming
message.

(iii) Information is exchanged between processors as messages, that is,
elements of the alphabet A; the message null indicates no commu-
nication. Messages might encode logical expressions such as true

and false, or finite-resolution quantized representations of integer
and real numbers.

(iv) In some uniform algorithms, the messages between processors are
the processors’ states. In such cases, the corresponding commu-
nication alphabet is A = W ∪{null} and the message-generation
function msgstd(w, j) = w is referred to as the standard message-
generation function. •
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Remarks 1.42 (Advanced topics: Control structures and failures).

(i) Processors in a network have only partial information about the
network topology. In general, each processor only knows its own
UID, and the UID of its in- and out-neighbors. Sometimes we will
assume that the processor knows the network diameter. In some
cases (Peleg, 2000), actively running networks might depend upon
“control structures,” that is, structures that are computed at ini-
tial time and are exploited in subsequent algorithms. For example,
routing tables might be computed for routing problems, “leader”
processors might be elected, and tree structures might be computed
and represented in a distributed manner for various tasks; for ex-
ample, coloring or maximal independent set problems. We present
some sample algorithms to compute these structures below.

(ii) A key issue in the study of distributed algorithms is the possible
occurrence of failures. A network might experience intermittent
or permanent communication failures: along given edges, a null

message or an arbitrary message might be delivered instead of the
intended value. Alternatively, a network might experience various
types of processor failures: a processor might transmit only null

messages (i.e., the msg function always returns null), a processor
might quit updating its state (i.e., the stf function neglects incoming
messages and returns the current state value), or a processor might
implement arbitrarily modified msg and stf functions. The latter
situation, in which completely arbitrary and possibly malicious be-
havior is adopted by faulty nodes, is referred to as a Byzantine
failure in the distributed algorithms literature. •

1.5.2 Complexity notions

Here, we begin our analysis of the performance of distributed algorithms.
We introduce a notion of algorithm completion and, in turn, we introduce
the classic notions of time, space, and communication complexity.

Definition 1.43 (Algorithm completion). We say that an algorithm
terminates when only null messages are transmitted and all processors’
states become constants. •

Remarks 1.44 (Alternative termination notions).

(i) In the interest of simplicity, we have defined evolutions to be un-
bounded in time and we do not explicitly require algorithms to
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actually have termination conditions, that is, to be able to detect
when termination takes place.

(ii) It is also possible to define the termination time as the first instant
when a given problem or task is achieved, independently of the fact
that the algorithm might continue to transmit data subsequently.•

Definition 1.45 (Time complexity). The (worst-case) time complexity
of a distributed algorithm DA on a network S, denoted TC(DA), is the
maximum number of rounds required by the execution of DA on S among
all allowable initial states until termination. •

Next, it is of interest to quantify the memory and communication re-
quirements of distributed algorithms. From an information theory view-
point (Gallager, 1968), the information content of a memory variable or of
a message is properly measured in bits. On the other hand, it is convenient
to use the alternative notions of “basic memory unit” and “basic message.”
It is customary (Peleg, 2000) to assume that a “basic memory unit” or a
“basic message” contains log(n) bits; so that, for example, the information
content of a robot identifier i ∈ {1, . . . , n} is log(n) bits or, equivalently,
one “basic memory unit.” Note that elements of the processor state set W
or of the alphabet set A might amount to multiple basic memory units or
basic messages; the null message has zero cost. Unless specified otherwise,
the following definitions and examples are stated in terms of basic memory
units and basic messages.

Definition 1.46 (Space complexity). The (worst-case) space complexity
of a distributed algorithm DA on a network S, denoted by SC(DA), is the
maximum number of basic memory units required by a processor executing
DA on S among all processors and among all allowable initial states until
termination. •

Remark 1.47 (Space complexity conventions). By convention, each
processor knows its identity, that is, it requires log(n) bits to represent its
unique identifier in a set with n distinct elements. We do not count this cost
in the space complexity of an algorithm. •

Next, we introduce a notion of communication complexity.

Definition 1.48 (Communication complexity). The (worst-case) com-
munication complexity of a distributed algorithm DA on a network S, de-
noted by CC(DA), is the maximum number of basic messages transmitted
over the entire network during the execution of DA among all allowable
initial states until termination. •
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We conclude this section by discussing ways of quantifying time, space
and communication complexity. The idea, borrowed from combinatorial op-
timization, is to adopt asymptotic “order of magnitude” measures. Formally,
complexity bounds will be expressed with respect to the Bachmann–Landau
symbols O, Ω and Θ defined in Section 1.1. Let us be more specific:

(i) we will say that an algorithm has time complexity of order Ω(f(n))
over some network if, for all n, there exists a network of order n
and initial processor values such that the time complexity of the
algorithm is greater than a constant factor times f(n);

(ii) we will say that an algorithm has time complexity of order O(f(n))
over arbitrary networks if, for all n, for all networks of order n and
for all initial processor values, the time complexity of the algorithm
is lower than a constant factor times f(n); and

(iii) we will say that an algorithm has time complexity of order Θ(f(n))
if its time complexity is of order Ω(f(n)) over some network and
O(f(n)) over arbitrary networks at the same time.

Similar conventions will be used for space and communication complexity.

In many cases, the complexity of an algorithm will typically depend upon
the number of vertices of the network. It is therefore useful to present a
few simple facts about these functions now. Over arbitrary digraphs S =
(I, Ecmm) of order n, we have

diam(S) ∈ Θ(n), |Ecmm(S)| ∈ Θ(n2) and radius(v,S) ∈ Θ(diam(S)),

where v is any vertex of S.

Remark 1.49 (Additional complexity notions). Numerous variations
of the proposed complexity notions are possible and may be of interest.

Global lower bounds. In the definition of lower bound, consider the logic
quantifier describing the role of the network. The lower bound state-
ment is “existential” rather than “global,” in the sense that the bound
does not hold for all graphs. As discussed in Peleg (2000), it is pos-
sible to define also “global” lower bounds, that is, lower bounds over
all graphs, or lower bounds over specified classes of graphs.

Average complexity notions. The proposed complexity notions focus on
the worst-case situation. It is possible to define expected or average
complexity notions, where one is interested in characterizing, for ex-
ample, the average number of rounds required or the average number
of basic messages transmitted over the entire network during the al-
gorithm execution among all allowable initial states until termination.
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Problem complexity. It is possible to define complexity notions for prob-
lems, rather than algorithms, by considering, for example, the worst-
case optimal performance among all algorithms that solve the given
problem, or over classes of algorithms or classes of graphs. •

1.5.3 Broadcast and BFS tree computation

In the following, we consider some basic algorithmic problems such as the
simple one-to-all communication task—that is, broadcasting—and the es-
tablishment of some “control structures” (see Remarks 1.42), such as the
construction of a BFS spanning tree and the election of a leader.

Problem 1.50 (Broadcast). Assume that a processor, called the source,
has a message, called the token. Transmit the token to all others processors
in the network. •

Note that existence of a spanning tree rooted at the source is a neces-
sary requirement for the broadcast problem to be solvable. We begin by
establishing some analysis results for the broadcast problem.

Lemma 1.51 (Complexity lower bounds for the broadcast prob-
lem). Let S be a network containing a spanning tree rooted at v. The
broadcast problem for S from the source v has communication complexity
lower bounded by n− 1 and time complexity lower bounded by radius(v,S).

In what follows, we shall solve the broadcast problem while simultaneously
also considering the following problem.

Problem 1.52 (BFS tree computation). Let S be a network containing
a spanning tree rooted at v. Compute a distributed representation for a
BFS tree rooted at v. •

We add two remarks on the BFS tree computation problem:

(i) By a distributed representation of a directed tree with bounded
memory at each node, we mean the following: each child vertex
knows the identity of its parent and the root vertex knows that it
has no parents. A more informative structure would require each
parent to know the identity of its children; this is easy to achieve
on undirected digraphs.

(ii) The BFS tree computation has the same lower bounds as the broad-
cast problem.
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An elegant and classic solution to the broadcast and BFS tree compu-
tation problems is given by the flooding algorithm. This algorithm
implements the same “breadth-first search” mechanism of the (centralized)
BFS algorithm characterized in Lemma 1.28:

[Informal description] The source broadcasts the token to its
out-neighbors. In each communication round, each node deter-
mines whether it has received a non-null message from one of
its in-neighbors. When a non-null message is received—that is,
the token is received—the node performs two actions. First, the
node stores the token in the variable data (this solves the Broad-
cast problem). Second, the node stores the identity of one of
the transmitting in-neighbors in the variable parent (this solves
the BFS tree computation problem). Specifically, if the message
is received simultaneously from multiple in-neighbors, then the
node stores the smallest among the identities of the transmitting
in-neighbors. In the subsequent communication round, the node
broadcasts the token to its out-neighbors.

To formally describe the algorithm, we assume that the node with the
message to be broadcast is v = 1. Also, we assume that the token is a letter
of the Greek alphabet {α, . . . , ω}:

Synchronous Network: S = ({1, . . . , n}, Ecmm)

Distributed Algorithm: flooding

Alphabet: A = {α, . . . , ω}∪ null

Processor State: w = (parent, data, snd-flag), where

parent ∈ {0, . . . , n}, initially: parent[1] = 1,

parent[j] = 0 for all j 6= 1

data ∈ A, initially: data[1] = µ,

data[j] = null for all j 6= 1

snd-flag ∈ {false, true}, initially: snd-flag[1] = true,

snd-flag[j] = false for j 6= 1

function msg(w, i)

1: if (parent 66= i) AND (snd-flag = true) then
2: return data

3: else
4: return null

function stf(w, y)
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1: case
2: (data = null) AND (y contains only null messages):

% The node has not yet received the token
3: new-parent := null

4: new-data := null

5: new-snd-flag := false

6: (data = null) AND (y contains a non-null message):
% The node has just received the token

7: new-parent := smallest UID among transmitting in-neighbors
8: new-data := a non-null message
9: new-snd-flag := true

10: (data 6= null):
% If the node already has the token, then do not re-broadcast it

11: new-parent := parent

12: new-data := data

13: new-snd-flag := false

14: return (new-parent, new-data, new-snd-flag)

An execution of the flooding algorithm is shown in Figure 1.15.

1
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6

(a)

1

2 3 4

5

6

(b)

Figure 1.15 An example execution of the flooding algorithm. The source is vertex
1: (a) shows the network and (b) shows the BFS tree that results from the
execution.

This algorithm can analyzed by induction: one can show that, for d ∈
{1, . . . , radius(v,S)}, every node at a distance d from the root receives a
non-null message at round d. A summary of the results is given as follows.

Lemma 1.53 (Complexity upper bounds for the flooding algo-
rithm). For a network S containing a spanning tree rooted at v, the flood-
ing algorithm has communication complexity in Θ(|Ecmm|), time com-
plexity in Θ(radius(v,S)), and space complexity in Θ(1).

We conclude the section with a final remark.

45

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

Remark 1.54 (Termination condition for the flooding algorithm).
As presented, the flooding algorithm does not include a termination
condition, that is, the processors do not have a mechanism to detect when
the broadcast and tree computation are complete. If an upper bound on the
graph diameter is known, then it is easy to design a termination condition
based on this information; we do this in the next subsection. If no a priori
knowledge is available, then one can design more sophisticated algorithms
for networks with stronger connectivity properties. We refer to Lynch (1997)
and Peleg (2000) for a complete discussion about this. •

1.5.4 Leader election

Next, we formulate another interesting problem for a network.

Problem 1.55 (Leader election). Assume that all processors of a net-
work have a state variable, say leader, initially set to unknwn. We say that
a leader is elected when one and only one processor has the state variable
set to true and all others have it set to false. Elect a leader. •

This task that is a bit more global in nature. We display here a solution
that requires individual processors to know the diameter of the network,
denoted by diam(S), or an upper bound on it:

[Informal description] In each communication round, each agent
sends to its out-neighbors the maximum UID it has received up
to that time. This is repeated for diam(S) rounds. At the last
round, each agent compares the maximum received UID with its
own, and declares itself a leader if they coincide, or a non-leader
otherwise.

The algorithm is called the floodmax algorithm: the maximum UID in
the network is transmitted to other agents in an incremental fashion. At
the first communication round, agents that are neighbors of the agent with
the maximum UID receive the message from it. At the next communication
round, the neighbors of these agents receive the message with the maximum
UID. This process goes on for diam(S) rounds, to ensure that every agent
receives the maximum UID. Note that there are networks for which all agents
receive the message with the maximum UID in fewer communication rounds
than diam(S). The algorithm is formally stated as follows:

Synchronous Network: S = ({1, . . . , n}, Ecmm)

Distributed Algorithm: floodmax
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Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, round), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i

max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i

leader ∈ {false, true, unknwn}, initially: leader[i] = unknwn for all i

round ∈ {0, 1, . . . ,diam(S)}, initially: round[i] = 0 for all i

function msg(w, i)

1: if round < diam(S) then
2: return max-id

3: else
4: return null

function stf(w, y)

1: new-id:= max{max-id, largest identifier in y}
2: case
3: round < diam(S): new-lead := unknwn

4: round = diam(S) AND max-id = my-id: new-lead := true

5: round = diam(S) AND max-id > my-id: new-lead := false

6: return (my-id, new-id, new-lead, round +1)

Figure 1.16 shows an execution of the floodmax algorithm. Some
properties of this algorithm are characterized in the following lemma. A
complete analysis of this algorithm, including modifications to improve the
communication complexity, is discussed in Lynch (1997, Section 4.1).

Figure 1.16 Execution of the floodmax algorithm. The diameter of the network is 4.
In the leftmost frame, the agent with the maximum UID is colored in red.
After four communication rounds, its message has been received by all agents.

Lemma 1.56 (Complexity upper bounds for the floodmax algo-
rithm). For a network S containing a spanning tree, the floodmax al-
gorithm has communication complexity in O(diam(S)|Ecmm|), time com-
plexity equal to diam(S), and space complexity in Θ(1).

A simplification of the floodmax algorithm leads to the Le Lann–
Chang–Roberts algorithm (or LCR algorithm in short) for leader elec-
tion in rings, see (Lynch, 1997, Chapter 3.3), which we describe next. The

47

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

LCR algorithm runs on a ring digraph and does not require the agents
to know the diameter of the network. We provide an informal and a formal
description of the algorithm.

[Informal description] In each communication round, each agent
sends to its neighbors the maximum UID it has received up to
that time. (Agents do not record the number of communication
rounds.) When the agent with the maximum UID receives its
own UID from an in-neighbor, it declares itself the leader.

Synchronous Network: ring digraph

Distributed Algorithm: LCR

Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, snd-flag), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i

max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i

leader ∈ {true, false, unknwn}, initially: leader[i] = unknwn for all i

snd-flag ∈ {true, false}, initially: snd-flag[i] = true for all i

function msg(w, i)

1: if snd-flag = true then
2: return max-id

3: else
4: return null

function stf(w, y)

1: case
2: (y contains only null msgs) OR (largest identifier in y < my-id):
3: new-id := max-id

4: new-lead := leader

5: new-snd-flag := false

6: (largest identifier in y = my-id):
7: new-id := max-id

8: new-lead := true

9: new-snd-flag := false

10: (largest identifier in y > my-id):
11: new-id := largest identifier in y
12: new-lead := false

13: new-snd-flag := true

14: return (my-id, new-id, new-lead, new-snd-flag)
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Figure 1.17 shows an execution of the LCR algorithm. The properties
of the LCR algorithm can be characterized as follows.

Figure 1.17 Execution of the LCR algorithm. In the leftmost frame, the agent with the
maximum UID is colored in red. After five communication rounds, this agent
receives its own UID from its in-neighbor and declares itself the leader.

Lemma 1.57 (Complexity upper bounds for the LCR algorithm).
For a ring network S of order n, the LCR algorithm has communication
complexity in Θ(n2), time complexity equal to n, and space complexity in
Θ(1).

1.5.5 Shortest-paths tree computation

Finally, we consider the shortest-paths tree problem in a weighted digraph:
in Section 1.4.4 we presented the Dijkstra algorithm to solve this prob-
lem in a centralized setting; we present here the Bellman-Ford algo-
rithm for the distributed setting. We consider a synchronous network as-
sociated to a weighted digraph, that is, we assume that a strictly positive
weight is associated to each communication edge. We aim to compute a tree
containing shortest paths from a source, say node 1, to all other nodes. As
for the computation of a BFS tree, we aim to obtain a distributed represen-
tation of a directed tree with bounded memory at each node:

[Informal description] Each agent maintains in its memory an es-
timate dist of its weighted distance from the source, and an esti-
mate parent of the in-neighbor corresponding to the (weighted)
shortest path from the source. The dist estimate is initialized
to 0 for the source and to +∞ for all other nodes. In each com-
munication round, each agent performs the following tasks: (1)
it transmits its dist value estimate to its out-neighbors, (2) it
computes the smallest quantity among “the dist value received
from an in-neighbor summed with the edge weight correspond-
ing to that in-neighbor,” and (3) if the agent’s estimate dist is
larger than this quantity, then the agent updates its dist and
its estimate parent.
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The algorithm is formally stated as follows:

Synchronous Network with Weights: S = ({1, . . . , n}, Ecmm, A)

Distributed Algorithm: Distributed Bellman-Ford

Alphabet: A = R>0 ∪ null∪{+∞}
Processor State: w = (parent, dist), where

parent ∈ {1, . . . , n}, initially: parent[j] = j for all j

dist ∈ A, initially: data[1] = 0,

data[j] = +∞ for all j 6= 1

function msg(w, i)

1: if round < n then
2: return dist

3: else
4: return null

function stf(w, y)

1: i := processor UID
2: k := arginf{yj + aji | for all yj 6= null}
3: if (dist < k) then
4: return (parent, dist)
5: else
6: return (k, yk + aki)

In other words, if we let di ∈ R≥0 ∪{+∞} denote the dist variable for
each processor i, then the Bellman-Ford algorithm is equivalent to the
following discrete-time dynamical system:

di(ℓ+ 1) = inf
{

di(ℓ) , inf{dj(ℓ) + aji | (j, i) ∈ Ecmm}
}

,

with initial conditions d(0) = (1,+∞, . . . ,+∞). (Recall that Ecmm is the
edge set and that the weights aij are strictly positive for all (i, j) ∈ Ecmm.)

The following formal statements may be made about the evolution of this
algorithm. If there exists a directed spanning tree rooted at vertex 1, then all
variables di will take a final value in time equal to their topological distance
from vertex 1. After k communication rounds, the estimated distance at
node i equals the shortest path of topological length at most k from the
source to node i. Therefore, after n− 1 communication rounds, all possible
distinct topological paths connecting source to node i have been investigated.

The complexity properties of the distributed Bellman-Ford algo-
rithm are described as follows.
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Lemma 1.58 (Complexity upper bounds for the distributed Bell-
man-Ford algorithm). For a network S of order n containing a spanning
tree rooted at v, the distributed Bellman-Ford algorithm has com-
munication complexity in Θ(n|Ecmm|), time complexity equal to n − 1, and
space complexity in Θ(1).

Figure 1.18 shows an execution of the distributed Bellman-Ford al-
gorithm in a weighted digraph with four nodes and six edges.
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Figure 1.18 Execution of the distributed Bellman-Ford algorithm. (a) The proces-
sor state initialization. The vertex 1 is the only one whose variable dist is 0.
After three iterations, as guaranteed by Lemma 1.58, (d) depicts the resulting
shortest-paths tree of the digraph rooted at vertex 1. This tree is represented
in the last frame, with edges colored in gray.
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1.6 LINEAR DISTRIBUTED ALGORITHMS

Computing a linear combination of the initial states of the processors is one
of the most basic computation that we might be interested in implementing
on a synchronous network. More accurately, linear distributed algorithms
on synchronous networks are discrete-time linear dynamical systems whose
evolution map is linear and has a sparsity structure related to the network.
These algorithms represent an important class of iterative algorithms that
find applications in optimization, in the solution of systems of equations,
and in distributed decision making; see, for instance Bertsekas and Tsitsiklis
(1997). In this section, we present some relevant results on distributed linear
algorithms.

1.6.1 Linear iterations on synchronous networks

Given a synchronous network S = ({1, . . . , n}, Ecmm), assign a scalar fji 6= 0
to each directed edge (i, j) ∈ Ecmm. Given such scalars fji for (i, j) ∈ Ecmm,
the Linear combination algorithm over S is defined as follows:

Distributed Algorithm: Linear combination

Alphabet: A = R∪ null

Processor state: w ∈ R

function msg(w, i) = msgstd(w, i)

function stf(w, y)

1: i := processor UID
2: return fiiw +

∑

j∈N in(i) fijyj

We assume that each processor i ∈ {1, . . . , n} knows the scalars fij , for
j ∈ N in(i) ∪ {i}, so that it can evaluate the state-transition function. Also,
we assume that real numbers may be transmitted through a communication
channel, that is, we neglect quantization issues in the message-generation
function.

In the language of Section 1.3, one can regard the Linear combination
algorithm over S as the discrete-time continuous-space dynamical system
(X,X0, f), with X = X0 = Rn and an evolution map defined by f(w) =
F · w, where we define a matrix F ∈ Rn×n with vanishing entries except
for fji, for (i, j) ∈ Ecmm. Note that, if A(S) denotes the adjacency matrix
of the digraph S, then the entries of F vanish precisely when the entries of
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A(S)T vanish. With this notation, the evolution w : Z≥0 → Rn with initial
condition w0 ∈ Rn is given by

w(0) = w0, w(ℓ+ 1) = F · w(ℓ), ℓ ∈ Z≥0. (1.6.1)

Conversely, any linear algorithm of the form (1.6.1) can easily be cast as
a Linear combination algorithm over a suitable synchronous network.
We do this bookkeeping carefully, in order to be consistent with the notion
of associated weighted digraph from Remark 1.36. Given F ∈ Rn×n, let
SF be the synchronous network with node set {1, . . . , n} and with edge set
Ecmm(F ), defined by any of the equivalent statements:

(i) (i, j) ∈ Ecmm(F ) if and only if fji 6= 0; or

(ii) SF is the reversed and unweighted version of the digraph associated
to F .

1.6.2 Averaging algorithms

Here, we study linear combination algorithms over time-dependent weighted
directed graphs; we restrict our analysis to nonnegative weights.

Definition 1.59 (Averaging algorithms). The averaging algorithm as-
sociated to a sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n is
the discrete-time dynamical system

w(ℓ+ 1) = F (ℓ) · w(ℓ), ℓ ∈ Z≥0. (1.6.2)

•

In the literature, such algorithms are often referred to as agreement algo-
rithms, or as consensus algorithms.

There are useful ways to compute a stochastic matrix, and therefore, a
time-independent averaging algorithm, from a weighted digraph; see Exer-
cise E1.15.

Definition 1.60 (Adjacency- and Laplacian-based averaging). Let G
be a weighted digraph with node set {1, . . . , n}, weighted adjacency matrix
A, weighted out-degree matrix Dout, and weighted Laplacian L. Then

(i) the adjacency-based averaging algorithm is defined by the stochastic
matrix (In +Dout)

−1(In +A) and reads in components

wi(ℓ+ 1) =
1

1 + dout(i)

(

wi(ℓ) +
n

∑

j=1

aijwj(ℓ)
)

; (1.6.3)
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(ii) given a positive scalar ε upper bounded by min{1/dout(i) | i ∈
{1, . . . , n}}, the Laplacian-based averaging algorithm is defined by
the stochastic matrix In − εL(G) and reads in components

wi(ℓ+ 1) =
(

1 − ε
n

∑

j=1,j 6=i

aij

)

wi(ℓ) + ε
n

∑

j=1,j 6=i

aijwj(ℓ). (1.6.4)

These notions are immediately extended to sequences of stochastic matrices
arising from sequences of weighted digraphs. •

Adjacency-based averaging algorithms arising from unweighted undirected
graphs without self-loops are also known as equal-neighbor averaging rule
or the Vicsek’s model (see Vicsek et al., 1995). Specifically, if G is an
unweighted graph with vertices {1, . . . , n} and without self-loops, then the
equal-neighbor averaging rule is

wi(ℓ+ 1) = avrg
(

{wi(ℓ)}∪{wj(ℓ) | j ∈ NG(i)}
)

, (1.6.5)

where we adopt the shorthand avrg({x1, . . . , xk}) = (x1 + · · · + xk)/k.

Remark 1.61 (Sensing versus communication interpretation of di-
rected edges). In the definition of averaging algorithms arising from di-
graphs, the digraph edges play the role of “sensing edges,” not that of “com-
munication edges.” In other words, a nonzero entry aij , corresponding to
the digraph edge (i, j), implies that the ith component of the state is up-
dated with the jth component of the state. It is as if node i could sense the
state of node j, rather than node i transmitting to node j its own state. •

Next, we present the main stability and convergence results for averag-
ing algorithms associated to a sequence of stochastic matrices. We start
by discussing equilibrium points and their stability. Recall that 1n is an
eigenvector of any stochastic matrix with eigenvalue 1 and that the diagonal
set diag(Rn) is the vector subspace generated by 1n. Therefore, any point
in diag(Rn) is an equilibrium for any averaging algorithm. We refer to the
points of the diag(Rn) as agreement configurations, since all the components
of an element in diag(Rn) are equal to the same value. We will informally say
that an algorithm achieves agreement if it steers the network state toward
the set of agreement configurations.

Lemma 1.62 (Stability of agreement configurations). Any averaging
algorithm in Rn is uniformly stable and uniformly bounded with respect to
diag(Rn).
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Regarding convergence results, we need to introduce a useful property of
collections of stochastic matrices. Given α ∈ ]0, 1], the set of non-degenerate
matrices with respect to α consists of all stochastic matrices F with entries
fij , for i, j ∈ {1, . . . , n}, satisfying

fii ∈ [α, 1], and fij ∈ {0}∪[α, 1] for j 6= i.

Additionally, the sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} is non-
degenerate if there exists α ∈ ]0, 1] such that F (ℓ) is non-degenerate with
respect to α for all ℓ ∈ Z≥0. We now state the main convergence result and
postpone its proof to Section 1.8.5.

Theorem 1.63 (Convergence for time-dependent stochastic matri-
ces). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate sequence of stochas-
tic matrices. For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated to
F (ℓ), according to Remark 1.36. The following statements are equivalent:

(i) the set diag(Rn) is uniformly globally attractive for the averaging
algorithm associated to {F (ℓ) | ℓ ∈ Z≥0}; and

(ii) there exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ+ 1)∪ · · · ∪G(ℓ+ δ)

contains a globally reachable vertex.

We collect a few observations about this result.

Remarks 1.64 (Discussion of Theorem 1.63).

(i) The statement in Theorem 1.63(i) means that each solution to the
time-dependent linear dynamical system (1.6.2) converges uniformly
and asymptotically to the vector subspace generated by 1n.

(ii) The necessary and sufficient condition in Theorem 1.63(ii) amounts
to the existence of a uniformly bounded time duration δ with the
property that a weak connectivity assumption holds over each col-
lection of δ consecutive digraphs. We refer to Blondel et al. (2005)
for a counterexample showing that if the duration in Theorem 1.63
is not uniformly bounded, then there exist algorithms that do not
converge.

(iii) According to Definition 1.23, uniform convergence is a property of
all solutions to system (1.6.2) starting at any arbitrary time, and not
only at time equal to zero. If we restrict our attention to solutions
that only start at time zero, then Theorem 1.63 should be modified
as follows: the statement in Theorem 1.63(i) implies, but is not
implied by, the statement in Theorem 1.63(ii).
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(iv) The theorem applies only to sequences of non-degenerate matri-
ces. Indeed, there exist sequences of degenerate stochastic matrices
whose associated averaging algorithms converge. Furthermore, one
does not even need to consider sequences, because it is possible to
define converging algorithms by just considering a single stochastic
matrix. Precisely when the stochastic matrix is primitive, we al-
ready know that the associated averaging algorithm will converge
(see Theorem 1.13). Examples of degenerate primitive stochas-
tic matrices (with converging associated averaging algorithms) are
given in Exercise E1.23. We discuss time-invariant averaging algo-
rithms in Proposition 1.68 below. •

Theorem 1.63 gives a general result about non-degenerate stochastic ma-
trices that are not necessarily symmetric. The following theorem presents
a convergence result for the case of symmetric matrices (i.e., undirected
digraphs) under connectivity requirements that are weaker (i.e., the du-
ration does not need to be uniformly bounded) than those expressed in
statement (ii) of Theorem 1.63.

Theorem 1.65 (Convergence for time-dependent stochastic sym-
metric matrices). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate
sequence of symmetric, stochastic matrices. For ℓ ∈ Z≥0, let G(ℓ) be the un-
weighted graph associated to F (ℓ), according to Remark 1.36. The following
statements are equivalent:

(i) the set diag(Rn) is globally attractive for the averaging algorithm
associated to {F (ℓ) | ℓ ∈ Z≥0}; and

(ii) for all ℓ ∈ Z≥0, the graph
⋃

τ≥ℓ

G(τ)

is connected.

Let us particularize our discussion here on adjacency- and Laplacian-based
averaging algorithms.

Corollary 1.66 (Convergence of adjacency- and Laplacian-based
averaging algorithms). Let {G(ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a sequence of
weighted digraphs. The following statements are equivalent:

(i) there exists δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ+ 1)∪ · · · ∪G(ℓ+ δ)

contains a globally reachable vertex;

(ii) the set diag(Rn) is uniformly globally attractive for the adjacency-
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based averaging algorithm (1.6.3) associated to {G(ℓ) | ℓ ∈ Z≥0};
and

(iii) the set diag(Rn) is uniformly globally attractive for the Laplacian-
based averaging algorithm (1.6.4) (defined with ε < 1/n) associated
to {G(ℓ) | ℓ ∈ Z≥0}.

Finally, we refine the results presented thus far by discussing some further
aspects.

Proposition 1.67 (Convergence to a point in the invariant set).
Under the assumptions in Theorem 1.63 and assuming that diag(Rn) is uni-
formly globally attractive for the averaging algorithm, each individual evolu-
tion converges to a specific point of diag(Rn).

In general, the final value upon which all wi, i ∈ {1, . . . , n}, agree in the
limit is unknown. This final value depends on the initial condition and the
specific sequence of matrices defining the time-dependent linear algorithm.
In some cases, however, one can compute the final value by restricting the
class of allowable matrices. We consider two settings: time-independent
averaging algorithms and doubly stochastic averaging algorithms.

First, we specialize the main convergence result to the case of time-
independent averaging algorithms. Note that, given a stochastic matrix
F , convergence of the averaging algorithm associated to F for all initial
conditions is equivalent to the matrix F being semi-convergent (see Defini-
tion 1.6).

Proposition 1.68 (Time-independent averaging algorithm). Con-
sider the linear dynamical system on Rn

w(ℓ+ 1) = Fw(ℓ), ℓ ∈ Z≥0. (1.6.6)

Assume that F ∈ Rn×n is stochastic, let G(F ) denote its associated weighted
digraph, and let v ∈ Rn be a left eigenvector of F with eigenvalue 1. Assume
either one of the two following properties:

(i) F is primitive (i.e., G(F ) is strongly connected and aperiodic); or

(ii) F has non-zero diagonal terms and a column of Fn−1 has positive
entries (i.e., G(F ) has self-loops at each node and has a globally
reachable node).

Then every trajectory w of system (1.6.6) converges to (vTw(0)/vT1n)1n.

Proof. From Theorem 1.63 we know that the dynamical system (1.6.6) con-
verges if property (ii) holds. The same conclusion follows if F satisfies prop-
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erty (i) because of the Perron–Frobenius Theorem 1.13 and Lemma 1.7. To
computing the limiting value, note that

vTw(ℓ+ 1) = vTFw(ℓ) = vTw(ℓ),

that is, the quantity ℓ 7→ vTw(ℓ) is constant. Because F is semi-convergent
and stochastic, we know that limℓ→+∞w(ℓ) = α1n for some α. To conclude,
we compute α from the relationship α(vT1n) = limℓ→+∞ vTw(ℓ) = vTw(0).

�

Remarks 1.69 (Alternative conditions for time-independent aver-
aging).

(i) The following necessary and sufficient condition generalizes and is
weaker than the two sufficient conditions given in Proposition 1.68:
every trajectory of system (1.6.6) is asymptotically convergent if and
only if all sinks of the condensation digraph of G(F ) are aperiodic
subgraphs of G(F ). We refer the interested reader to Meyer (2001,
Chapter 8) for the proof of this statement and for the related notion
of ergodic classes of a Markov chain. Also, we refer the interested
reader to Exercise E1.13 for the notion of condensation digraph.

(ii) Without introducing any trajectory w, the result of the proposition
can be equivalently stated by saying that

lim
ℓ→+∞

F ℓ = (vT1n)−11nv
T . •

Second, we focus on the case of doubly stochastic averaging algorithms.

Corollary 1.70 (Average consensus). Let {F (ℓ) | ℓ ∈ Z≥0} be a se-
quence of stochastic matrices as in Theorem 1.63. If all matrices F (ℓ),
ℓ ∈ Z≥0, are doubly stochastic, then every trajectory w of the averaging
algorithms satisfies

n
∑

i=1

wi(ℓ) =
n

∑

i=1

wi(0), for all ℓ,

that is, the sum of the initial conditions is a conserved quantity. There-
fore, if {F (ℓ) | ℓ ∈ Z≥0} is non-degenerate and satisfies property (ii) in
Theorem 1.63, then

lim
ℓ→+∞

wj(ℓ) =
1

n

n
∑

i=1

wi(0), j ∈ {1, . . . , n}.
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Proof. The proof of the first fact is an immediate consequence of
n

∑

i=1

wi(ℓ+ 1) = 1T
nw(ℓ+ 1) = 1T

nF (ℓ)w(ℓ) = 1T
nw(ℓ) =

n
∑

i=1

wi(ℓ).

The second fact is an immediate consequence of the first fact. �

In other words, if the matrices are doubly stochastic, then each compo-
nent of the trajectories will converge to the average of the initial condition.
We therefore adopt the following definition: an average-consensus averaging
algorithm is an averaging algorithm whose sequence of stochastic matrices
are all doubly stochastic.

1.6.3 The convergence speed of averaging algorithms

We know that any trajectory of the associated averaging algorithm converges
to the diagonal set diag(Rn); in what follows we characterize how fast this
convergence takes place. We begin with some general definitions for semi-
convergent matrices (recall the discussion culminating in Lemma 1.7).

Definition 1.71 (Convergence time and exponential convergence
factor). Let A ∈ Rn×n be semi-convergent with limit limℓ→+∞Aℓ = A∗.

(i) For ε ∈ ]0, 1[, the ε-convergence time of A is the smallest time
Tε(A) ∈ Z≥0 such that, for all x0 ∈ Rn and ℓ ≥ Tε(A),

∥

∥Aℓx0 −A∗x0

∥

∥

2
≤ ε‖x0 −A∗x0‖2.

(ii) The exponential convergence factor of A, denoted by rexp(A) ∈
[0, 1[, is

rexp(A) = sup
x0 6=A∗x0

lim sup
ℓ→+∞

(‖Aℓx0 −A∗x0‖2

‖x0 −A∗x0‖2

)1/ℓ
. •

The exponential convergence factor has the following interpretation: If the
trajectory x(ℓ) = Aℓx0 maximizing the sup operator has the form x(ℓ) =
ρℓ(x0 − x∗) + x∗, for ρ < 1, then it is immediate to see that rexp(A) = ρ.

Lemma 1.72 (Exponential convergence factor of a convergent ma-
trix). If A is a convergent matrix, then rexp(A) = ρ(A).

In what follows, we are interested in studying how the convergence time
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and the exponential convergence factor of a matrix depend upon ε and upon
the dimension of the matrix itself.

Remark 1.73 (Complexity notions). Analogously to the treatment in
Section 1.5.2, we introduce some complexity notions. Let An ∈ Rn×n, n ∈ N,
be a sequence of semi-convergent matrices with limit limℓ→+∞Aℓ

n = A∗
n, and

let ε ∈ ]0, 1]. We say that:

(i) Tε(An) is of order Ω(f(n, ε)) if, for all n and all ε, there exists an
initial condition x0 ∈ Rn such that ‖Aℓ

nx0−A∗x0‖2 > ε
∥

∥x0−A∗x0

∥

∥

2
for all times ℓ greater than a constant factor times f(n, ε);

(ii) Tε(An) is of order O(f(n, ε)) if, for all n and all ε, Tε(An) is less
than or equal to a constant factor times f(n, ε); and

(iii) Tε(An) is of order Θ(f(n, ε)) if it is both of order Ω(f(n, ε)) and of
order O(f(n, ε)). •

Lemma 1.74 (Asymptotic relationship). Let An ∈ Rn×n, n ∈ N, be
a sequence of semi-convergent matrices and let ε ∈ ]0, 1]. In the limit as
ε→ 0+ and as n→ +∞,

Tε(An) ∈ O
( 1

1 − rexp(An)
log ε−1

)

.

Proof. By the definition of the exponential convergence factor and of lim sup,
we know that for all η > 0, there exists N such that, for all ℓ > N ,

∥

∥Aℓx0 −A∗x0

∥

∥

2
≤ (rexp(An) + η)ℓ‖x0 −A∗x0‖2.

The ε-convergence time is upper bounded by any ℓ such that (rexp(An) +
η)ℓ ≤ ε. Selecting η = (1 − rexp(An))/2, simple manipulations lead to

ℓ ≥ 1

− log((rexp(An) + 1)/2)
log ε−1.

It is also immediate to note that 2
1−r ≥ 1

− log((r+1)/2) , for all r ∈ ]0, 1[. This

establishes the bound in the statement above. �

Next, we apply the notion of convergence time and exponential conver-
gence factor to any non-degenerate stochastic matrix whose associated di-
graph has a globally reachable node.

Lemma 1.75 (Exponential convergence factor of stochastic matri-
ces). Let F be a stochastic matrix with strictly positive diagonal entries and
whose associated digraph has a globally reachable node. Then

rexp(F ) = ρess(F ).
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(From equation (1.2.1), recall that ρess(F ) = max{‖λ‖C | λ ∈ spec(F ) \
{1}}.)

Proof. If v ∈ Rn is a left eigenvector of F , then, as in Proposition 1.68,

lim
ℓ→+∞

F ℓ = F ∗ = (vT1n)−11nv
T .

Relying upon vTF = vT and F1n = 1n, straightforward manipulations show
that F ∗ = F ∗F = FF ∗ = F ∗F ∗ and in turn

F ℓ+1 − F ∗ = (F − F ∗)(F ℓ − F ∗).

For any w0 ∈ Rn such that w0 6= F ∗w0, define the error variable e(ℓ) :=
F ℓw0 − F ∗w0. Note that the error variable evolves according to e(ℓ+ 1) =
(F − F ∗)e(ℓ) and converges to zero. Additionally, the rate at which w(ℓ) =
F ℓw0 converges to F ∗w0 is the same at which e(ℓ) converges to zero, that
is,

rexp(F − F ∗) = rexp(F ).

Therefore,

rexp(F ) = rexp(F − F ∗) = ρ(F − F ∗) = ρess(F ).

�

The following result establishes bounds on convergence factors and conver-
gence times for stochastic matrices arising from the equal-neighbor averaging
rule in equation (1.6.5).

Theorem 1.76 (Bounds on the convergence factor and the conver-
gence time). Let G be an undirected unweighted connected graph of order
n and let ε ∈ ]0, 1]. Define the stochastic matrix F = (In + D(G))−1(In +
A(G)). There exists γ > 0 (independent of n) such that the exponential
convergence factor and convergence time of F satisfy

rexp(F ) ≤ 1 − γn−3, and Tε(F ) ∈ O(n3 log ε−1),

as ε→ 0+ and n→ +∞.

1.6.4 Algorithms defined by tridiagonal Toeplitz and tridiagonal circulant

matrices

This section presents a detailed analysis of the convergence rates of linear
distributed algorithms defined by tridiagonal Toeplitz matrices and by cer-
tain circulant matrices. Let us start by introducing the family of matrices
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under study. For n ≥ 2 and a, b, c ∈ R, define the n×nmatrices Tridn(a, b, c)
and Circn(a, b, c) by

Tridn(a, b, c) =















b c 0 . . . 0
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
0 . . . 0 a b















,

and

Circn(a, b, c) = Tridn(a, b, c) +















0 . . . . . . 0 a
0 . . . . . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0















.

We call the matrices Tridn and Circn tridiagonal Toeplitz and tridiagonal
circulant, respectively. The two matrices only differ in their (1, n) and (n, 1)
entries. Note our convention that

Circ2(a, b, c) =

[

b a+ c
a+ c b

]

.

Note that, for a = 0 and c 6= 0 (alternatively, a 6= 0 and c = 0), the syn-
chronous networks defined by Trid(a, b, c) and Circ(a, b, c) are, respectively,
the chain and the ring digraphs introduced in Section 1.4. If both a and
c are non-vanishing, then the synchronous networks are, respectively, the
undirected versions of the chain and the ring digraphs.

Now, we characterize the eigenvalues and eigenvectors of Tridn and Circn.

Lemma 1.77 (Eigenvalues and eigenvectors of tridiagonal Toeplitz
and tridiagonal circulant matrices). For n ≥ 2 and a, b, c ∈ R, the
following statements hold:

(i) for ac 6= 0, the eigenvalues and eigenvectors of Tridn(a, b, c) are,
respectively, for i ∈ {1, . . . , n},

b+ 2c

√

a

c
cos

(

iπ

n+ 1

)

∈ C,

















(

a
c

)1/2
sin

(

iπ
n+1

)

(

a
c

)2/2
sin

(

2iπ
n+1

)

...
(

a
c

)n/2
sin

(

niπ
n+1

)

















∈ Cn;

(ii) the eigenvalues and eigenvectors of Circn(a, b, c) are, respectively,
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for i ∈ {1, . . . , n} and ω = exp(2π
√−1
n ),

b+ (a+ c) cos

(

i2π

n

)

+
√
−1(c− a) sin

(

i2π

n

)

∈ C,

and (1, ωi, . . . , ω(n−1)i)T ∈ Cn.

Proof. Both facts are discussed, for example, in Meyer (2001, Example 7.2.5
and Exercise 7.2.20). Fact (ii) requires some straightforward algebraic ma-
nipulations. �

Figure 1.19 illustrates the location of the eigenvalues of these matrices in
the complex plane.

(b, 0)

c

(a)

(b, 0)

c

(b)

Figure 1.19 The eigenvalues of Toeplitz and circulant matrices (cf., Lemma 1.77) are
closely related to the roots of unity. Plotted in the complex plane, the black
disks correspond in (a) to the eigenvalues of Trid13(a, b, c), and in (b) to the
eigenvalues of Circ14(0, b, c).

Remarks 1.78 (Inclusion relationships for eigenvalues of tridiago-
nal Toeplitz and tridiagonal circulant matrices).

(i) The set of eigenvalues of Tridn(a, b, c) is contained in the real interval
[b − 2

√
ac, b + 2

√
ac], if ac ≥ 0, and in the interval in the complex

plane [b− 2
√
−1

√

|ac|, b+ 2
√
−1

√

|ac|], if ac ≤ 0.

(ii) The set of eigenvalues of Circn(a, b, c) is contained in the ellipse on
the complex plane with center b, horizontal axis 2|a+c|, and vertical
axis 2|c− a|. •
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Next, we characterize the convergence rate of linear algorithms defined by
tridiagonal Toeplitz and tridiagonal circulant matrices. As in the previous
section, we are interested in asymptotic results as the system dimension
n→ +∞ and as the accuracy parameter ε goes to 0+.

Theorem 1.79 (Linear algorithms defined by tridiagonal Toeplitz
and tridiagonal circulant matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b, c ∈
R. Let x : Z≥0 → Rn and y : Z≥0 → Rn be solutions to

x(ℓ+ 1) = Tridn(a, b, c)x(ℓ), y(ℓ+ 1) = Circn(a, b, c) y(ℓ),

with initial conditions x(0) = x0 and y(0) = y0, respectively. The following
statements hold:

(i) if a = c 6= 0 and |b| + 2|a| = 1, then limℓ→+∞ x(ℓ) = 0n with
ε-convergence time in Θ

(

n2 log ε−1
)

;

(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then limℓ→+∞ x(ℓ) = 0n with
ε-convergence time in O

(

n logn+ log ε−1
)

; and

(iii) if a ≥ 0, c ≥ 0, 1 > b > 0 and a + b + c = 1, then limℓ→+∞ y(ℓ) =
(

1
n1T

ny0

)

1n with ε-convergence time in Θ
(

n2 log ε−1
)

.

The proof of this result is reported in Section 1.8.6. Next, we extend
these results to another interesting set of tridiagonal matrices. For n ≥ 2
and a, b ∈ R, define the n× n matrices ATrid+

n (a, b) and ATrid−
n (a, b) by

ATrid±
n (a, b) = Tridn(a, b, a) ±















a 0 . . . . . . 0
0 0 . . . . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . 0 0
0 . . . . . . 0 a















.

We refer to these matrices as augmented tridiagonal matrices. If we define

P+ =



















1 1 0 0 . . . 0
1 −1 1 0 . . . 0
1 0 −1 1 . . . 0
...

. . .
. . .

. . .

1 0 . . . 0 −1 1
1 0 . . . 0 0 −1



















,
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and

P− =



















1 1 0 0 . . . 0
−1 1 1 0 . . . 0
1 0 1 1 . . . 0
...

. . .
. . .

. . .

(−1)n−2 0 . . . 0 1 1
(−1)n−1 0 . . . 0 0 1



















,

then the following similarity transforms are satisfied:

ATrid±
n (a, b) = P±

[

b± 2a 0
0 Tridn−1(a, b, a)

]

P−1
± . (1.6.7)

To analyze the convergence properties of the linear algorithms determined
by ATrid+

n (a, b) and ATrid−
n (a, b), we will find it useful to consider the vector

1T
n− = (1,−1, 1, . . . , (−1)n−2, (−1)n−1)T ∈ Rn.

In the following theorem, we will not assume that the matrices of interest
are semi-convergent. We will establish convergence to a trajectory, rather
than to a fixed point. For ε ∈ ]0, 1[, we say that a trajectory x : Z≥0 → Rn

converges to xfinal : Z≥0 → Rn with convergence time Tε ∈ Z≥0 if

(i) ‖x(ℓ) − xfinal(ℓ)‖2 → 0 as ℓ→ +∞; and

(ii) Tε is the smallest time such that ‖x(ℓ) − xfinal(ℓ)‖2 ≤ ε‖x(0) −
xfinal(0)‖2, for all ℓ ≥ Tε.

Theorem 1.80 (Linear algorithms defined by augmented tridiag-
onal matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b ∈ R with a 6= 0 and
|b| + 2|a| = 1. Let x : Z≥0 → Rn and z : Z≥0 → Rn be solutions to

x(ℓ+ 1) = ATrid+
n (a, b)x(ℓ), z(ℓ+ 1) = ATrid−

n (a, b) z(ℓ),

with initial conditions x(0) = x0 and z(0) = z0, respectively. The following
statements hold:

(i) limℓ→+∞
(

x(ℓ)−xave(ℓ)1n

)

= 0n, where xave(ℓ) = ( 1
n1T

nx0)(b+2a)ℓ,

with ε-convergence time in Θ
(

n2 log ε−1
)

; and

(ii) limℓ→+∞
(

z(ℓ) − zave(ℓ)1n−
)

= 0n, where zave(ℓ) = ( 1
n1T

n−z0)(b −
2a)ℓ, with ε-convergence time in Θ

(

n2 log ε−1
)

.

The proof of this result is reported in Section 1.8.6.

Remark 1.81 (From Toeplitz to stochastic matrices). A tridiagonal
Toeplitz matrix is not stochastic unless its off-diagonal elements are zero.
The tridiagonal circulant matrices Circn and augmented tridiagonal ma-
trices ATrid+

n studied in Theorem 1.79(iii) and Theorem 1.80(i) are slight
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modifications of tridiagonal Toeplitz matrices and are doubly stochastic. In-
deed, the evolutions converge to the average consensus value, as predicted by
Corollary 1.70. Note that convergence times obtained for Circn and ATrid+

n

are consistent with the upper bound predicted by Theorem 1.76. •

We conclude this section with some useful bounds.

Lemma 1.82 (Bounds on vector norms). Assume that x ∈ Rn, y ∈
Rn−1, and z ∈ Rn−1 jointly satisfy

x = P+

[

0
y

]

, x = P−

[

0
z

]

.

Then 1
2‖x‖2 ≤ ‖y‖2 ≤ (n− 1)‖x‖2 and 1

2‖x‖2 ≤ ‖z‖2 ≤ (n− 1)‖x‖2.

The proof of this result is based on spelling out the coordinate expressions
for x, y, and z, and is left to the reader as Exercise E1.29.

1.7 NOTES

Dynamical systems and stability theory

Our definition of a state machine is very basic; more general definitions of
state machines can be found in the literature (see Sipser, 2005), but the one
presented in this chapter is sufficient for our purposes.

The literature on dynamical and control systems is vast. The main
tool that we use in later chapters is the LaSalle Invariance Principle, ob-
tained by LaSalle (1960) and discussed in LaSalle (1986); see also the earlier
works by Barbašin and Krasovskĭı (1952) and Krasovskĭı (1963) for related
versions. Relevant sample references include modern texts on dynamical
systems (Guckenheimer and Holmes, 1990), linear control systems (Chen,
1984), nonlinear control systems (Khalil, 2002), robust control (Dullerud
and Paganini, 2000), and discrete-event systems (Cassandras and Lafortune,
2007).

Graph theory

The basic definitions of graph theory are standard in the literature; see, for
example, Biggs (1994), Godsil and Royle (2001), and Diestel (2005). The
discussion about graph algorithms is taken from Cormen et al. (2001), which
also contains detailed discussion on implementation and complexity issues.
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Regarding Section 1.4.4.4, standard references on combinatorial optimiza-
tion include Vazirani (2001) and Korte and Vygen (2005).

In Section 1.4.5, all statements about powers of the adjacency matrix are
standard results in algebraic graph theory; see, for example Biggs (1994)
and Godsil and Royle (2001). Lemma 1.27 is a recent result from Lin et al.
(2005) andMoreau (2005). Proposition 1.35, on the fact that a weighted
digraph is aperiodic and irreducible if and only if its adjacency matrix is
primitive, is related to standard results in the theory of Markov chains; see,
for example Seneta (1981) and Meyn and Tweedie (1999). Our proof adopts
the approach in Lin (2005). Laplacian matrices have numerous remarkable
properties; two elegant surveys are Mohar (1991) and Merris (1994). The-
orem 1.37, characterizing the properties of the Laplacian matrix, contains
some recent results. A proof of statement (ii) is given in Olfati-Saber and
Murray (2004); in our proof, we follow the approach in Francis (2006). State-
ment (iii) is proved by Lin et al. (2005) and Francis (2006); the following
equivalent version is proved in Ren and Beard (2005): a weighted digraph G
contains a spanning tree if and only if rank(L(rev(G))) = n− 1. Regarding
statement (iv), the equivalence between (iv)a and (iv)b is proved by Olfati-
Saber and Murray (2004) and the equivalence between (iv)b and (iv)c is
proved by Moreau (2005).

Distributed algorithms

Our discussion of distributed algorithms is extremely incomplete. We have
only presented a few token ideas and we refer to the textbooks by Lynch
(1997) and Peleg (2000) for detailed treatments. Let us mention briefly that
many more efficient algorithms are available in the literature—for exam-
ple, the GHS algorithm (Gallager et al., 1983) for minimum spanning tree
computation and consensus algorithms with communication and processors
faults; much attention is dedicated to fault tolerance in asynchronous sys-
tems with shared memory and in asynchronous network systems.

Linear distributed algorithms

Distributed linear algorithms—and, in particular, averaging iterations that
achieve consensus among processors—have a long and rich history. The
richness comes from the vivid analogies with physical processes of diffusion,
with Markov chain models, and with the sharp theory of positive matrices
developed by Perron and Frobenius. What follows is a necessarily incom-
plete list. An early reference on averaging opinions and achieving consensus
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is DeGroot (1974). An early reference on the connection between averaging
algorithms, the products of stochastic matrices, and ergodicity in inhomo-
geneous Markov chains is Chatterjee and Seneta (1977) – the history of
inhomogeneous Markov chains being a classic topic since the early twen-
tieth century. The stochastic setting was investigated in Cogburn (1984).
Load balancing with divisible tasks in parallel computers is discussed in Cy-
benko (1989). A comprehensive theory of asynchronous parallel processors
implementing distributed gradient methods and time-dependent averaging
algorithms is developed in the series of works Tsitsiklis (1984), Tsitsiklis
et al. (1986), and Bertsekas and Tsitsiklis (1997). Much interest for aver-
aging algorithms arose from the influential work on flocking by Jadbabaie
et al. (2003). Sharp conditions for convergence for the time-dependent set-
ting were obtained in Moreau (2005). Finally, proper attention was given to
the average consensus problem in Olfati-Saber and Murray (2004).

Regarding Theorem 1.63, characterizing the convergence of averaging al-
gorithms defined by sequences of stochastic matrices, we note that: (1)
the PhD thesis Tsitsiklis (1984) established convergence under a strong-
connectivity assumption; (2) a sufficient condition was independently re-
discovered in Jadbabaie et al. (2003), adopting a result from Wolfowitz
(1963); and (3) Moreau (2003, 2005) obtained the necessary and sufficient
condition (for uniform convergence in non-degenerate sequences) involving
the existence of a uniformly globally reachable node. The work in Moreau
(2003, 2005) is an early reference also for Theorem 1.65; additional related
results and a historical discussion appeared in Blondel et al. (2005) and Hen-
drickx (2008). The estimates of the convergence factor given in Theorem 1.76
in Section 1.6.3 were proved by Landau and Odlyzko (1981). Our treatment
in Section 1.6.4 follows Mart́ınez et al. (2007a).

Among the numerous recent directions of research on consensus and av-
eraging, we would like to mention the following: continuous-time consensus
algorithms (Olfati-Saber and Murray, 2004; Moreau, 2004; Lin et al., 2004;
Ren and Beard, 2005; Lin et al., 2005, 2007c), consensus over random net-
works (Hatano and Mesbahi, 2005; Wu, 2006; Patterson et al., 2007; Picci
and Taylor, 2007; Porfiri and Stilwell, 2007; Tahbaz-Salehi and Jadbabaie,
2008; Fagnani and Zampieri, 2009), consensus in finite time (Cortés, 2006;
Sundaram and Hadjicostis, 2008), consensus in small-world networks (Olfati-
Saber, 2005; Durrett, 2006; Tahbaz-Salehi and Jadbabaie, 2007), consen-
sus algorithms for general functions (Bauso et al., 2006; Cortés, 2008b;
Lorenz and Lorenz, 2008; Sundaram and Hadjicostis, 2008), connections
with the heat equation and partial difference equation (Ferrari-Trecate et al.,
2006), spatially decaying interactions (Cucker and Smale, 2007), conver-
gence in time-delayed and asynchronous settings (Blondel et al., 2005; An-
geli and Bliman, 2006; Fang and Antsaklis, 2008), quantized consensus
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problems (Savkin, 2004; Kashyap et al., 2007; Carli et al., 2009; Zhu and
Mart́ınez, 2008b), consensus on manifolds (Scardovi et al., 2007; Sarlette
and Sepulchre, 2009; Igarashi et al., 2007), applications to distributed signal
processing (Spanos et al., 2005; Xiao et al., 2005; Olfati-Saber et al., 2006;
Zhu and Mart́ınez, 2008a), characterization of convergence rates and time
complexity (Landau and Odlyzko, 1981; Olshevsky and Tsitsiklis, 2009; Cao
et al., 2008; Carli et al., 2008). Numerous interesting results are reported
in recent PhD theses (Lin, 2005; Cao, 2007; Lorenz, 2007; Barooah, 2007;
Carli, 2008; Hendrickx, 2008; Sarlette, 2009). Finally, we would like to point
out two recent surveys (Olfati-Saber et al., 2007; Ren et al., 2007) and the
text by (Ren and Beard, 2008).

Synchronization is a fascinating topic related to averaging algorithms. A
very early reference is the work by Huygens (1673) on coupled pendula. The
synchronization of oscillators in dynamical systems has received increasing
attention, and key references include Wiener (1958), Kuramoto (1975), Win-
free (1980), Kuramoto (1984), Strogatz (2000), and Nijmeijer (2001); see
also the widely accessible Strogatz (2003). Under all-to-all interactions,
Mirollo and Strogatz (1990) prove synchronization of a collection of “inte-
grate and fire” biological oscillators. Recent works on the Kuramoto and
other synchronized oscillator models include Jadbabaie et al. (2004), Chopra
and Spong (2009), Triplett et al. (2006), Papachristodoulou and Jadbabaie
(2006), Wang and Slotine (2006).

1.8 PROOFS

This section gathers the proofs of the main results presented in the chapter.

1.8.1 Proof of Theorem 1.21

Here we provide the proof of the LaSalle Invariance Principle for set-valued
discrete-time dynamical systems. We remark that Theorem 1.19 is an im-
mediate consequence of Theorem 1.21 and that Theorem 1.20 is proved in
a similar way (for details, we refer to (Khalil, 2002)).

Proof of Theorem 1.21. Let γ be any evolution of (X,X0, T ) starting from
W . Let Ω(γ) denote the ω-limit set6 of the sequence γ = {γ(ℓ) | ℓ ∈ Z≥0};
since W is closed, it follows that Ω(γ) ⊂ W . Next, we prove that Ω(γ) is
weakly positively invariant. Let z ∈ Ω(γ). Then there exists a subsequence

6The ω-limit set of a sequence γ = {γ(ℓ) | ℓ ∈ Z≥0} is the set of points y for which there exists
a subsequence {γ(ℓm) | m ∈ Z≥0} of γ such that lim

m→+∞
γ(ℓm) = y.
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{γ(ℓm) | m ∈ Z≥0} of γ such that lim
m→+∞

γ(ℓm) = z. Consider the sequence

{γ(ℓm + 1) | m ∈ Z≥0}. Since this sequence is bounded, it has a convergent
subsequence. For ease of notation, we use the same notation to refer to
it, that is, there exists y such that lim

m→+∞
γ(ℓm + 1) = y. By definition,

y ∈ Ω(γ). Moreover, using the fact that T is closed, we deduce that y ∈ T (z).
Therefore, Ω(γ) is weakly positively invariant.

Now, consider the sequence V ◦ γ = {V (γ(ℓ)) | ℓ ∈ Z≥0}. Since γ is
bounded and V is non-increasing along T on W , the sequence V ◦ γ is
decreasing and bounded from below, and therefore, convergent. Let c ∈ R

satisfy lim
ℓ→+∞

V (γ(ℓ)) = c. Next, we prove that the value of V on Ω(γ) is

constant and equal to c. Take any z ∈ Ω(γ). Accordingly, there exists a
subsequence {γ(ℓm) | m ∈ Z≥0} such that lim

m→+∞
γ(ℓm) = z. Since V is

continuous, lim
m→+∞

V (γ(ℓm)) = V (z). From lim
ℓ→+∞

V (γ(ℓ)) = c, we conclude

that V (z) = c.

Finally, the fact that Ω(γ) is weakly positively invariant and V being
constant on Ω(γ) implies that

Ω(γ) ⊂ {x ∈ X | ∃y ∈ T (x) such that V (y) = V (x)}.
Therefore, we conclude that lim

ℓ→+∞
dist(γ(ℓ), S ∩ V −1(c)) = 0, where S is

the largest weakly positively invariant set contained in {x ∈ X | ∃y ∈
T (x) such that V (y) = V (x)}. �

1.8.2 Proofs of Lemmas 1.26 and 1.27

Proof of Lemma 1.26. The first statement is obvious. Regarding the second
statement, we prove that a topologically balanced digraph with a globally
reachable node is strongly connected, and leave the proof of the other case
to the reader. We reason by contradiction. Assume that G is not strongly
connected. Let S ⊂ V be the set of all nodes ofG that are globally reachable.
By hypothesis, S 6= ∅. Since G is not strongly connected, we have S (

V . Note that any outgoing edge with origin in a globally reachable node
automatically makes the destination a globally reachable node too. This
implies that there cannot be any outgoing edges from a node in S to a node
in V \ S. Let v ∈ V \ S such that v has an out-neighbor in S (such a node
must exist, since otherwise the nodes in S cannot be globally reachable).
Since by hypothesis G is balanced, there must exist an edge of the form
(w, v) ∈ E. Clearly, w 6∈ S, since otherwise v would be globally reachable
too, which is a contradiction. Therefore, w ∈ V \ S. Again, using the
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fact that G is topologically balanced, there must exist an edge of the form
(z, w) ∈ E. As before, z ∈ V \ S (note that z = v is a possibility). Since
V \ S is finite and so is the number of possible edges between its nodes,
applying this argument repeatedly, we find that there exists a vertex whose
out-degree is strictly larger than its in-degree, which is a contradiction with
the fact that G is topologically balanced. We refer to Cortés (2008b) for the
proof that G is Eulerian. �

Proof of Lemma 1.27. (i) =⇒ (ii) Assume that i ∈ V is the root of
the spanning tree and take an arbitrary pair of nonempty, disjoint sub-
sets U1, U2 ⊂ V . If i ∈ U1, then there must exist a path from i ∈ U1 to a
node in U2. Therefore, U2 must have an in-neighbor. Analogously, if i ∈ U2,
then U1 must have an in-neighbor. Finally, it is possible that i /∈ U1 ∪U2.
In this case, there exist paths from i to both U1 and U2, that is, both sets
have in-neighbors.

(ii) =⇒ (i) This is proved by finding a node from which there exists a
path to all others. We do this in an algorithmic manner using induction. At
each induction step k, except the last one, four sets of nodes are considered,
U1(k) ⊂W1(k) ⊂ V , U2(k) ⊂W2(k) ⊂ V , with the following properties:

(a) the sets W1(k) and W2(k) are disjoint; and

(b) from each node of Us(k) there exists a path to each other node in
Ws(k) \ Us(k), s ∈ {1, 2}.

Induction Step k=1: Set U1 = W1 = {i1} and U2 = W2 = {i2}, where i1, i2
are two arbitrary different nodes of the graph that satisfy the properties (a)
and (b).

Induction Step k > 1: Suppose that for k − 1 we found sets U1(k − 1) ⊂
W1(k − 1) and U2(k − 1) ⊂ W (k − 1) as in (a) and (b). Since U1(k − 1)
and U2(k − 1) are disjoint, then there exists either an edge (ik, j1) with
j1 ∈ U1(k − 1), ik ∈ V \ U1(k − 1), or an edge (ik, j2) with j2 ∈ U2(k − 1)
and ik ∈ V \ U2(k − 1). Suppose that an edge (ik, j2) exists (the case of a
edge (ik, j1) can be treated in a similar way). Only four cases are possible.

(A) If ik ∈W1(k−1) and W1(k−1)∪W2(k−1) = V , then we can termi-
nate the algorithm and conclude that from any node h ∈ U1(k − 1)
there exists a path to all other nodes in the graph and thus there is
a spanning tree.
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(B) If ik ∈W1(k − 1) and W1(k − 1)∪W2(k − 1) 6= V , then set:

U1(k) = U1(k − 1),

W1(k) = W1(k − 1)∪W2(k − 2),

U2(k) = W2(k) = {hk},
where hk is an arbitrary node not belonging toW1(k−1)∪W2(k−1).

(C) If ik /∈W1(k − 1)∪W2(k − 1), then set

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = {ik},
W2(k) = W2(k − 1)∪{ik}.

(D) If ik ∈W2(k − 1) \ U2(k − 1) then

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = U2(k − 1)∪{ik},
W2(k) = W2(k − 1).

The algorithm terminates in a finite number of induction steps because at
each step, except when finally case (A) holds true, either the number of
nodes in W1 ∪W2 increases, or the number of nodes in W1 ∪W2 remains
constant and the number of nodes in U1 ∪U2 increases. �

1.8.3 Proofs of Propositions 1.33 and 1.35

Proof of Proposition 1.33. (ii) =⇒ (i) We aim to show that there exist
directed paths from any node to any other node. Fix i ∈ {1, . . . , n} and let
Ri ⊂ {1, . . . , n} be the set of nodes that belong to directed paths originating
from node i. Denote the unreachable nodes by Ui = {1, . . . , n} \ Ri. We
argue that Ui cannot contain any element, because if it does, then Ri ∪Ui

is a nontrivial partition of the index set {1, . . . , n} and irreducibility implies
the existence of a non-zero entry ajk with j ∈ Ri and k ∈ Ui. Therefore,
Ui = ∅, and all nodes are reachable from i. The converse statement (i) =⇒
(ii) is proved similarly.

(i) =⇒ (iii) If G is strongly connected, then there exists a directed path
of length k ≤ n − 1 connecting any node i to any other node j. Hence,
by Lemma 1.32(ii), the entry (Ak)ij is strictly positive. This immediately
implies the statement (iii). The converse statement (iii) =⇒ (i) is proved
similarly. �
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Next, we present a useful number theory result. This states that relatively
co-prime numbers generate all sufficiently large natural numbers.

Lemma 1.83 (Natural number combination). Let a1, . . . , aN ∈ N have
greatest common divisor 1. There exists k ∈ N such that every number
m > k can be written as

m = α1a1 + · · · + αNaN ,

for appropriate numbers α1, . . . , αN ∈ N.

Proof. Assume that a1 ≤ · · · ≤ aN without loss of generality. From the
generalized Bezout identity we know that, for any numbers a1, . . . , aN with
greatest common divisor 1, there exist integers γ1, . . . , γN ∈ Z such that

1 = γ1a1 + · · · + γNaN . (1.8.1)

Pick k = |γ1|a2
1 + · · ·+ |γN |a2

N ∈ N. Every number m > k can be written as

m = k +mqtnta1 +mrmndr,

for appropriate numbers mqtnt ≥ 0 and 1 ≤ mrmndr < a1. Using the defini-
tion of k and equation (1.8.1), we write

m =
(

|γ1|a2
1 + · · · + |γN |a2

N

)

+mqtnta1 +mrmndr(γ1a1 + · · · + γNaN )

= mqtnta1 + (|γ1|a1 +mrmndrγ1)a1 + · · · + (|γN |aN +mrmndrγN )aN .

The proof is now completed by noting that each integer number (|γ1|a1 +
mrmndrγ1), . . . , (|γN |aN + mrmndrγN ) is strictly positive, because mrmndr <
a1 ≤ · · · ≤ aN . �

Proof of Proposition 1.35. (i) =⇒ (ii) Pick any i. We claim that there
exists a number k(i) with the property that, for all m > k(i), we have that
(Am)ii is positive, that is, there exists a directed path from i to i of length
m for all m larger than a number k(i). To show this claim, let {c1, . . . , cN}
be the set of the cycles of G and let {ℓ1, . . . , ℓN} be their lengths. Because
G is aperiodic, Lemma 1.83 implies the existence of a number h(ℓ1, . . . , ℓN )
such that any number larger than h(ℓ1, . . . , ℓN ) is a linear combination of
ℓ1, . . . , ℓN with natural numbers as coefficients. Because G is strongly con-
nected, there exists a path γ of arbitrary length Γ(i) that starts at i, contains
a vertex of each of the cycles c1, . . . , cN , and terminates at i. Now, we claim
that k(i) = Γ(i) + h(ℓ1, . . . , ℓN ) has the desired property. Indeed, pick any
number m > k(i) and write it as k = Γ(i)+β1ℓ1+· · ·+βNℓN for appropriate
numbers β1, . . . , βN ∈ N. A directed path from i to i of length m is con-
structed by attaching to the path γ the following cycles: β1 times the cycle
c1, β2 times the cycle c2, . . . , βN times the cycle cN . Finally, having proved
the existence of k(i) with the desired property, let K be the maximum k(i)
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over all nodes i, and recall that diam(G) is the maximum pairwise distance
between nodes. Clearly, AM is positive for all M > K + diam(G).

(ii) =⇒ (i) From Lemma 1.32 we know that Ak > 0 means that there are
paths from every node to every other node of length k. Hence, the digraph
G is strongly connected. Next, we prove aperiodicity. Because G is strongly
connected, each node of G has at least one outgoing edge, that is, for all
i, there exists at least one index j such that aij > 0. This fact implies
that the matrix Ak+1 = AAk is positive via the following simple calculation:
(Ak+1)il =

∑n
h=1 aih(Ak)hl ≥ aij(A

k)jl > 0. In summary, we have shown
that, if Ak is positive for some k, then Am is positive for all subsequent
m ≥ k. Therefore, there are cycles in G of any length greater than or equal
to k, which means that G is aperiodic. �

1.8.4 Proof of Theorem 1.37

Proof. We begin with statement (i). Let lij , for i, j ∈ {1, . . . , n}, be the
entries of L(G). Note that lii =

∑n
j=1,j 6=i aij ≥ 0 and lij = −aij ≤ 0 for

i 6= j. By the Geršgorin disks Theorem 1.2, we know that each eigenvalue
of L(G) belongs to at least one of the disks

{

z ∈ C
∣

∣ ‖z − lii‖C ≤
n

∑

j=1,j 6=i

|lij |
}

=
{

z ∈ C
∣

∣ ‖z − lii‖C ≤ lii

}

.

These disks contain the origin 0n and complex numbers with a positive real
part. This concludes the proof of statement (i).

Regarding statement (ii), note that Dout(G) is invertible because G is
strongly connected. Define the two matrices Ã = Dout(G)−1A(G) and L̃ =
Dout(G)−1L(G), and note that they satisfy L̃ = In − Ã. Since Dout(G)
is diagonal, the matrices A(G) and Ã have the same pattern of zeros and
positive entries. This observation and the assumption that G is strongly
connected imply that Ã is nonnegative and irreducible. By the Perron–
Frobenius Theorem 1.11, the spectral radius ρ(Ã) is a simple eigenvalue.
Furthermore, one can verify that Ã is row-stochastic (see Lemma 1.31),
and therefore, its spectral radius is 1 (see Exercise E1.4). In summary, we
conclude that 1 is a simple eigenvalue of Ã, that 0 is a simple eigenvalue of
L̃, that L̃ has rank n− 1, and that L(G) has rank n− 1.

Regarding statement (iii), we first prove that rank(L(G)) = n− 1 implies
the existence of a globally reachable vertex. By contradiction, let G con-
tain no globally reachable vertex. Then, by Lemma 1.27, there exist two
nonempty disjoint subsets U1, U2 ⊂ V (G) without any out-neighbor. After
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a permutation of the vertices, the adjacency matrix can be partitioned into
the blocks

A(G) =





A11 0 0
0 A22 0
A31 A32 A33



 .

Here, A12 and A13 vanish because U1 does not have any out-neighbor, and
A21 and A23 vanish because U2 does not have any out-neighbor. Note that
D11 − A11 and D22 − A22 are the Laplacian matrices of the graphs defined
by restricting G to the vertices in U1 and in U2, respectively. Therefore, the
eigenvalue 0 has geometric multiplicity at least 2 for the matrix Dout(G) −
A(G). This contradicts the assumption that rank(L(G)) = n− 1.

Next, still regarding statement (iii), we prove that the existence of a glob-
ally reachable vertex implies rank(L(G)) = n−1. Without loss of generality,
we assume that G contains self-loops at each node (so that Dout is invert-
ible). Let R be the set of globally reachable vertices; let r ∈ {1, . . . , n} be its
cardinality. If r = n, then the graph is strongly connected and statement (ii)
implies that rank(L(G)) = n− 1. Therefore, assume that r < n. Renumber
the vertices so that R is the set of the first r vertices. After this permu-
tation, the adjacency matrix and the Laplacian matrix can be partitioned
into the blocks

A(G) =

[

A11 0
A21 A22

]

, and L(G) =

[

L11 0
L21 L22

]

.

Here, A12 ∈ Rr×(n−r) vanishes, because there can be no out-neighbor of R;
otherwise that out-neighbor would be a globally reachable vertex in V \R.
Note that the rank of L11 ∈ Rr×r is exactly r−1, since the digraph associated
to A11 is strongly connected. To complete the proof it suffices to show that
the rank of L22 ∈ R(n−r)×(n−r) is full. Note that the same block partition
applies to the matrices Ã = D−1

outA and L̃ = D−1
outL considered in the proof

of statement (ii) above. With this block decomposition, we compute

Ãn−1 =

[

Ãn−1
11 0

Ã21(n− 1) Ãn−1
22

]

,

for some matrix Ã21(n− 1) that depends upon Ã11, Ã21 and Ã22. Because
a globally reachable node in G is globally reachable also in the digraph
associated to Ã, Proposition 1.33(v) implies that Ã21(n − 1) is positive.
This fact, combined with the fact that Ã and hence Ãn−1 are row-stochastic,
implies that Ãn−1

22 has maximal row sum (that is, ∞-induced norm) strictly

less than 1. Hence, the spectral radii of Ãn−1
22 and of Ã22 are strictly less

than 1. Since Ã22 has spectral radius strictly less than 1, the matrix L̃22 =
In−r − Ã22, and in turn the matrix L22, have full rank.

Regarding statement (iv), the equivalence between (iv)a and (iv)b is
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proved as follows. Because
∑n

j=1 lij = dout(vi)−din(vi) for all i ∈ {1, . . . , n},
it follows that 1T

nL(G) = 0T
n if and only if Dout(G) = Din(G). Next, we

prove that (iv)b implies (iv)c. Suppose that L(G)T1n = 0T
n and consider

the system γ̇(t) = −L(G)γ(t), γ(0) = x0, together with the positive definite
function V : Rn → R defined by V (x) = xTx. We compute the Lie derivative
of the function V along the vector field x 7→ −L(G)x as V̇ (x) = −2xTL(G)x.
Note that V̇ (x) ≤ 0, for all x ∈ Rn, is equivalent to L(G) + L(G)T ≥ 0.
Because 1T

nL(G) = 0T
n and L(G)1n = 0n, it can immediately be established

that exp(−L(G)t), t ∈ R, is a doubly stochastic matrix. From Theorem 1.1,
we know that if we let {Pα} be the set of n× n permutation matrices, then
there exist time-dependent convex combination coefficients

∑

α λα(t) = 1,
λα(t) ≥ 0, such that exp(−L(G)t) =

∑

α λα(t)Pα. By the convexity of V
and its invariance under coordinate permutations, for any x ∈ Rn, we have

V (exp(−L(G)t)x) = V (
∑

α

λα(t)Pαx)

≤
∑

α

λα(t)V (Pαx) =
∑

α

λα(t)V (x) = V (x) .

In other words, V (exp(−L(G)t)x) ≤ V (x) for all x ∈ Rn, which implies
V̇ (x) ≤ 0, for all x ∈ Rn. Finally, we prove that (iv)c implies (iv)b. By
assumption, −xT (L(G) + L(G)T )x = −2xTL(G)x ≤ 0 for all x ∈ Rn. In
particular, for any small ε > 0 and x = 1n − εL(G)T1n,

−(1T
n − ε1T

nL(G))L(G)(1n − εL(G)T1n) = ε‖L(G)T1n‖2
2 +O(ε2) ≤ 0,

which is possible only if L(G)T1n = 0T
n . �

1.8.5 Proofs of Theorem 1.63 and Proposition 1.67

In this section, we prove Theorem 1.63. The exposition follows along the
main lines of the original proof by Moreau (2005), with the variation of using
the LaSalle Invariance Principle for set-valued dynamical systems, presented
as Theorem 1.21. We begin with some preliminary results.

Lemma 1.84 (Union of digraphs and sums of adjacency matrices).
Let G1, . . . , Gδ be unweighted digraphs with common node set {1, . . . , n} and
adjacency matrices A1, . . . , Aδ. The unweighted digraph

G1 ∪ · · · ∪Gδ = ({1, . . . , n}, E(A1)∪ · · · ∪E(Aδ))

is equal to the unweighted digraph associated to the nonnegative matrix
∑

k∈{1,...,δ}Ak, that is, the unweighted digraph ({1, . . . , n}, E(A1+· · ·+Aδ)).

Proof. If (i, j) ∈ ∪k∈{1,...,δ}E(Gk), then there exists k0 ∈ {1, . . . , δ} such
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that (i, j) ∈ E(Gk0
). Denoting the entries of the matrix Ak by aij(k), this

implies that aij(k0) > 0, that aij(1) + · · · + aij(δ) > 0, and that (i, j) is an
edge in E(A1 + · · · + Aδ). The converse statement is easily proved with an
analogous reasoning. �

In what follows, for α ∈ ]0, 1], let F(α) denote the set of n× n stochastic
matrices that are non-degenerate with respect to α. Given α ∈ ]0, 1] and
δ ∈ N, define the sets Fδ(α) ⊂ Rn×n by

Fδ(α) =
{

F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ · · ·F1

and G(F1)∪ · · · ∪G(Fδ) contains a globally reachable node
}

,

or, equivalently by Proposition 1.33,

Fδ(α) =
{

F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ . . . F1

and a column of (F1 + · · · + Fδ)
n has positive entries

}

.

Lemma 1.85 (Compact sets of stochastic matrices). For α ∈ ]0, 1],
the sets F(α) and Fδ(α), δ ∈ N, are compact.

Proof. All sets are clearly bounded. In Exercise E1.24, we invite the reader
to prove that F(α) is closed. Let us now prove that Fδ(α) is closed. Consider
a matrix sequence {F (k) | k ∈ N} ⊂ Fδ(α) convergent to some matrix F .
Because F(αδ) is closed, we establish that F ∈ F(αδ). Because each matrix
F (k) belongs to Fδ(α), there exist matrices F1(k), . . . , Fδ(k) ∈ F(α) such
that F (k) = Fδ(k) · · ·F1(k). We claim that there exists a sequence kl ∈ N,
for l ∈ N, such that, for all s ∈ {1, . . . , δ}, the matrix sequences Fs(kl), l ∈ N,
are convergent. (To see this, note that F1(k) takes value in a compact set;
hence it must have a convergent subsequence. Restrict F2(k) to the instants
of time in the convergent subsequence for F1(k) and observe that it takes
value in a compact set, etc.) Therefore, there exist matrices Fs, to which the
matrix sequences Fs(kl), l ∈ N, converge. Taking the limit as l → +∞ in the
equality F (kl) = Fδ(kl) · · ·F1(kl), we establish that F = Fδ · · ·F1. Finally,
it remains to be shown that a column of B := (F1 + · · · + Fδ)

n has positive
entries. For k ∈ N, define B(k) = (F1(k)+ · · ·+Fδ(k))

n. Clearly, B(k) → B
as k → +∞. By the definition of the sequence F (k), each B(k) = (bij(k))
has the property that there exists jk ∈ {1, . . . , n} such that bijk

(k) > 0 for
all i ∈ {1, . . . , n}. Since {1, . . . , n} is a finite set, there exists j0 ∈ {1, . . . , n}
that satisfies this property for an infinite subsequence of matrices B(kl),
l ∈ N. With some straightforward bookkeeping, we write

(B(kl))ij0 =
δ

∑

a1,...,an=1

n
∑

h1=1

· · ·
n

∑

hn−1=1

(Fa1
(kl))ih1

· · · (Fan
(kl))hn−1j0 .
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Note that, because Fs(k) ∈ F(α), for s ∈ {1, . . . , δ}, each nonzero entry
Fs(k) is lower bounded by α > 0. Furthermore, each entry (B(kl))ij0 is the
sum of nonnegative terms, each of which is the product of n factors, each
of which is lower bounded by α. Hence, because (B(kl))ij0 is positive, it
is also lower bounded by αn. Since lim

l→+∞
B(kl) = B, by the compactness

of [αn, 1]∪{0}, it must be that B = (bij) satisfies bji0 ≥ αn > 0 for all
j ∈ {1, . . . , n}. In particular, this implies that F ∈ Fδ(α) and then Fδ(α) is
closed. �

Finally, we are able to prove the equivalences in Theorem 1.63.

Proof of Theorem 1.63. First, we prove that (i) implies (ii). Suppose that
for all durations δ ∈ N, there exists some ℓ0 ∈ N such that the digraph with
edges ∪s∈[ℓ0,ℓ0+δ]E(F (s)) does not contain a globally reachable node. By
Lemma 1.27, there must exist a set of nodes U1, U2 ⊂ {1, . . . , n} such that
there are no out-going edges (i1, j1), with i1 ∈ U1, i1 ∈ {1, . . . , n} \ U1 or
(i2, j2), with j2 ∈ U2, i2 ∈ {1, . . . , n} \ U2. Take any values a, b ∈ R, a 6= b,
and consider the initial conditions:

wi(ℓ0) =











a, i ∈ U1,

b, i ∈ U2,

c ∈ co(a, b), i ∈ {1, . . . , n} \ (U1 ∪U2).

Because of the properties of U1 and U2, for all δ ∈ N, we must have

wj(ℓ0 + δ + 1) =











a, j ∈ U1,

b, j ∈ U2,

c ∈ co(a, b), j ∈ {1, . . . , n} \ (U1 ∪U2).

Because δ can be chosen arbitrarily large, one can easily construct a con-
tradiction with the fact that diag(Rn) is supposed to be uniformly globally
attractive.

Next, we show that (ii) implies (i). Let α ∈ ]0, 1] to be the scalar with
respect to which the sequence is non-degenerate. Consider the set-valued
discrete-time dynamical system (Rn,Rn, Tα,δ), with evolution map Tα,δ :
Rn ⇉ Rn defined by

Tα,δ(w) = {Fw | F ∈ Fδ(α)}.
Because of this definition, any trajectory w : Z≥0 → Rn of the averaging
algorithm (1.6.2) satisfies

w((k + 1)δ) ∈ Tα,δ(w(kδ)), k ∈ Z≥0.
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In what follows, we intend to use the LaSalle Invariance Principle for set-
valued discrete dynamical systems, presented as Theorem 1.21, to prove that
lim

ℓ→+∞
dist(w(kℓ),diag(Rn)) = 0. This will then imply, by Lemma 1.24, the

uniform attractivity statement in the theorem. In the following, we check
the conditions of the theorem.

Closedness of the set-valued dynamical system. Consider a pair of vector
sequences {xk | k ∈ N} and {yk | k ∈ N} in Rn such that limk→+∞xk =
x, limk→+∞yk = y, and yk ∈ Tα,δ(xk), for all k ∈ N. We need to show
that y ∈ Tα,δ(x). By definition of Tα,δ and because yk ∈ Tα,δ(xk), there
exists a sequence {F (k) | k ∈ N} ⊆ Fδ(α) such that F (k)xk = yk, for all
k ∈ N. Furthermore, since Fδ(α) is compact by Lemma 1.85, there exists
a subsequence {F (kl) | l ∈ N} that is convergent to some F ∈ Fδ(α). The
desired conclusion follows from

y = lim
l→+∞

ykℓ
= lim

l→+∞
F (kℓ)xkℓ

= Fx.

Non-increasing Lyapunov function. Define the function V : Rn → R≥0 by

V (x) = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi.

Note that V is continuous. Pick any x ∈ Rn and any stochastic matrix
F ∈ Fδ(α). Recall that ‖x‖∞ = maxi∈{1,...,n} |xi|, and that ‖F‖∞ = 1.
Therefore, by the definition of the induced norm, ‖Fx‖∞ ≤ ‖x‖∞. Similarly,
in components,

(Fx)i =
∑

j∈{1,...,n}
fijxj ≥

(

∑

j∈{1,...,n}
fij

)

min
k∈{1,...,n}

xk,

which implies mini∈{1,...,n}(Fx)i ≥ mink∈{1,...,n} xk. Therefore, we have that
V (Fx) ≤ V (x) for all x ∈ Rn and F ∈ Fδ(α). In other words, the function
V is non-increasing along Tα,δ in Rn.

Boundedness. It can immediately be seen that, since ‖Fx‖∞ ≤ ‖x‖∞
for all stochastic matrices F and vectors x, the trajectory k 7→ w(kδ) is
bounded.

Invariant set. By Theorem 1.21, any trajectory of Tα,δ, and hence also the
trajectory w : Z≥0 → Rn of the averaging algorithm (1.6.2), will converge
to the largest weakly positively invariant set contained in a level set of the
Lyapunov function V and in a set where the Lyapunov function does not
decrease along T . In the following, we determine that this set must be
contained in diag(Rn).

For k ∈ N fixed, assume that w(kδ) satisfies V (w(kδ)) > 0. Given the av-
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eraging algorithm (1.6.2) defined by the sequence {F (ℓ) | ℓ ∈ Z≥0} ⊂ F(α),
define F1(k) = F (k + 1), . . . , Fδ(k) = F (k + δ). Additionally, define
F (k) = Fδ(k) · · ·F1(k) and note that F (k) ∈ Fδ(α), by construction. With
this notation, note that w(kδ+ s) = Fs(k) · · ·F1(k)w(kδ) for s ∈ {1, . . . , δ}.
Define wM = maxi∈{1,...,n}wi(kδ) and wm = mini∈{1,...,n}wi(kδ); by hypoth-
esis we know wM > wm. Define UM = {i ∈ {1, . . . , n} | w(kδ) = wM} and
Um = {i ∈ {1, . . . , n} | wj(kδ) = wm}; by hypothesis we know UM ∩Um = ∅.
Now, we are ready to use property (ii) in the theorem statement. Since
({1, . . . , n},∪s∈{1,...,δ}E(Fs(k)) contains a globally reachable node and since
UM and Um are nonempty and disjoint, then Lemma 1.27 implies that there
exists either

• (an out-neighbor of UM ) an edge (iM , jM ) ∈ E(Fs(kδ)) with iM ∈ UM ,
jM ∈ {1, . . . , n} \ UM , and s ∈ {1, . . . , δ}; or

• (an out-neighbor of Um) an edge (im, jm) ∈ E(Fs(kδ)) with im ∈ Um,
jm ∈ {1, . . . , n} \ Um, and s ∈ {1, . . . , δ}.

Without loss of generality, suppose that an edge (iM , jM ) exists and let
s0 ∈ {1, . . . , δ} be the first time index for which this happens. We have the
following two facts.

First, for every s ∈ {1, . . . , s0 − 1}, there does not exist any edge (i, h)
with i ∈ UM and h /∈ UM , and, thus, for all i ∈ UM ;

wi(kδ + 1) =
n

∑

j=1

(F1(k))ijwj(kδ) =
∑

h∈UM

(F1(k))ihwh(kδ)

=
(

∑

h∈UM

(F1(k))ih(k)
)

wM = wM .

The same argument can be repeated for F2(k), . . . , Fs(k), so that wi(kδ +
s) = wM for all i ∈ UM .

Second, if i /∈ UM at time kδ, then wi(kδ+s) < wM for all s ∈ {1, . . . , s0−
1}. To see this, we compute

wi(kδ + 1) =
n

∑

j=1

(F1(k))ijwj(kδ) = (F1(k))iiwi(kδ) +
n

∑

j=1,j 6=i

(F1(k))ijwj(kδ)

≤ (F1(k))iiwi(kδ) +
(

n
∑

j=1,j 6=i

(F1(k))ij

)

wM

≤ αwi(kδ) + (1 − α)wM < wM ,

where we used the assumption of non-degeneracy with parameter α ∈ ]0, 1].
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The same argument can be repeated for the subsequent multiplications by
the matrices F2(k), . . . , Fs(k).

We finally reach time s0 and compute

wiM
(kδ + s0) =

n
∑

j=1

(Fs0
(k))iM jwj(kδ + s0 − 1)

= (Fs0
(k))iM jM

wjM
(kδ + s0 − 1) +

n
∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1)

< (Fs0
(k))iM jM

wM +
n

∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1) ≤ wM .

This implies that wiM
((k+1)δ) < wM , so that iM does not belong to UM at

time (k+ 1)δ. That is, the cardinality of UM decreases at least by one after
(k + 1)δ. Since {1, . . . , n} is finite, after repeating this argument at most
n − 1 times, we have that UM becomes empty at time (k + n − 1)δ. (Here
we are assuming that the out-neighbor always exists for UM ; an analogous
argument can be made for the general case.) This is enough to guarantee
that V (w((k + n)δ)) < wM − wm = V (w(kδ)). This is what we need to
conclude that lim

k→+∞
dist(w(kδ),diag(R)) = 0. In summary, this concludes

the proof of Theorem 1.63. �

We conclude this section by establishing convergence to an individual
point, rather than a set of points.

Proof of Proposition 1.67. We adopt the same notation as above, that is, as
in the proof of Theorem 1.63. Since F (k) ∈ Fδ(α), the set of sequence points
{w(kδ) | k ∈ N} belongs to the convex hull of all the components of the initial
condition, that is, [miniwi(0),maxiwi(0)]n. Since [miniwi(0),maxiwi(0)]n

is compact, there exists a convergent subsequence {w(klδ) | l ∈ N} to a
point c1n. We also notice that for any kl ∈ N, we have wi((kl + k)δ) ∈
[miniwi(klδ),maxiwi(klδ)]

n, for all i ∈ {1, . . . , n} and k ∈ N. Because
lim

l→+∞
w(klδ) = c1n we know that lim

l→+∞
[min

i
wi(klδ),max

i
wi(klδ)]

n = c1n.

Therefore, any sequence {w((kl + k)δ) | k ∈ N}, for l ∈ N, must converge to
c1n. This implies that lim

k→+∞
w(kδ) = c1n. �
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1.8.6 Proofs of Theorems 1.79 and 1.80

Proof of Theorem 1.79. Let us prove fact (i). Because Tridn(a, b, a) is a real
symmetric matrix, Tridn(a, b, a) is normal and its 2-induced norm—that is,
its largest singular value—is equal to the magnitude of its eigenvalue with
the largest magnitude. Based on this information and on the eigenvalue
computation in Lemma 1.77, we compute

‖Tridn(a, b, a)‖2 = max
i∈{1,...,n}

∣

∣

∣

∣

b+ 2a cos

(

iπ

n+ 1

)∣

∣

∣

∣

≤ |b| + 2|a| max
i∈{1,...,n}

∣

∣

∣

∣

cos

(

iπ

n+ 1

)∣

∣

∣

∣

≤ |b| + 2|a| cos

(

π

n+ 1

)

.

Because we assumed that |b|+2|a| = 1 and because cos( π
n+1) < 1 for any n ≥

2, the 2-induced norm of Tridn(a, b, a) is strictly less than 1. Additionally,
for ℓ > 0, we bound from above the magnitude of the curve x, as

‖x(ℓ)‖2 = ‖Tridn(a, b, a)ℓx0‖2 ≤
(

|b| + 2|a| cos

(

π

n+ 1

))ℓ

‖x0‖2.

In order to have ‖x(ℓ)‖2 < ε‖x0‖2, it is sufficient to require that log ε >

ℓ log
(

|b| + 2|a| cos
(

π
n+ 1

))

, that is,

ℓ >
log ε−1

− log
(

|b| + 2|a| cos
(

π
n+ 1

)) . (1.8.2)

The upper bound now follows by noting that, as t→ 0, we have

− 1

log(1 − 2|a|(1 − cos t))
=

1

|a|t2 +O(1).

Let us now show the lower bound. Assume, without loss of generality, that
ab > 0 and consider the eigenvalue b + 2a cos( π

n+1) of Tridn(a, b, a). Note
that |b + 2a cos( π

n+1)| = |b| + 2|a| cos( π
n+1). (If ab < 0, then consider the

eigenvalue b+ 2a cos( nπ
n+1).) For n > 2, define the unit-length vector

vn =

√

2

n+ 1







sin π
n+1
...

sin nπ
n+1






∈ Rn, (1.8.3)

and note that, by Lemma 1.77(i), vn is an eigenvector of Tridn(a, b, a) with
eigenvalue b + 2a cos( π

n+1). The trajectory x with initial condition vn sat-

isfies ‖x(ℓ)‖2 =
(

|b| + 2|a| cos
(

π
n+1

))ℓ
‖vn‖2, and therefore, it will enter

B(1n, ε‖vn‖2) only when ℓ satisfies equation (1.8.2). This completes the
proof of fact (i).

82

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

Next, we prove fact (ii). Clearly, all eigenvalues of the matrix Tridn(a, b, 0)
are strictly inside the unit disk. For ℓ > 0, we compute

Tridn(a, b, 0)ℓ

= bℓ
(

In +
a

b
Tridn(1, 0, 0)

)ℓ
= bℓ

n−1
∑

j=0

ℓ!

j!(ℓ− j)!

(a

b

)j
Tridn(1, 0, 0)j ,

because of the nilpotency of Tridn(1, 0, 0). Now, we can bound from above
the magnitude of the curve x, as

‖x(ℓ)‖2 = ‖Tridn(a, b, 0)ℓx0‖2

≤ |b|ℓ
n−1
∑

j=0

ℓ!

j!(ℓ− j)!

(a

b

)j ∥

∥ Tridn(1, 0, 0)jx0

∥

∥

2
≤ ea/bℓn−1 |b|ℓ ‖x0‖2.

Here, we used ‖Tridn(1, 0, 0)jx0‖2 ≤ ‖x0‖2 and max{ ℓ!
(ℓ−j)! | j ∈ {0, . . . , n−

1}} ≤ ℓn−1. Therefore, in order to have ‖x(ℓ)‖2 < ε‖x0‖2, it suffices that
log(ea/b) + (n− 1) log ℓ+ ℓ log |b| ≤ log ε, that is,

ℓ− n− 1

− log |b| log ℓ >
a
b − log ε

− log |b| .

A sufficient condition for ℓ − α log ℓ > β, for α, β > 0, is that ℓ ≥ 2β +
2αmax{1, logα}. For, if ℓ ≥ 2α, then log ℓ is bounded from above by the
line ℓ/2α + logα. Furthermore, the line ℓ/2α + logα is a lower bound
for the line (ℓ − β)/α if ℓ ≥ 2β + 2α logα. In summary, it is true that
‖x(ℓ)‖2 ≤ ε‖x(0)‖2 whenever

ℓ ≥ 2
a
b − log ε

− log |b| + 2
n− 1

− log |b| max

{

1, log
n− 1

− log |b|

}

.

This completes the proof of the upper bound, that is, fact (ii).

The proof of fact (iii) is similar to that of fact (i). Because Circn(a, b, c) is
circulant, it is also normal and each of its singular values corresponds to an
eigenvector–eigenvalue pair. From Lemma 1.77(ii) and from the assumption
a+ b+ c = 1, it is clear that the eigenvalue corresponding to i = n is equal
to 1; this is the largest singular value of Circn(a, b, c) and the corresponding
eigenvector is 1n. We now compute the second largest singular value:

max
i∈{1,...,n−1}

∥

∥

∥
b+ (a+ c) cos

(

i2π

n

)

+
√
−1(c− a) sin

(

i2π

n

)

∥

∥

∥

C

=
∥

∥

∥
1 − (a+ c)

(

1 − cos
(2π

n

)

)

+
√
−1(c− a) sin

(

2π

n

)

∥

∥

∥

C

.

Here, ‖·‖C is the norm in C. Because of the assumptions on a, b, c, the second
largest singular value is strictly less than 1. In the orthogonal decomposition
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induced by the eigenvectors of Circn(a, b, c), we assume that the vector y0

has a component yave along the eigenvector 1n. For ℓ > 0, we bound the
distance of the curve y(ℓ) from yave1n as

‖y(ℓ) − yave1n‖2

= ‖Circn(a, b, c)ℓy0 − yave1n‖2 = ‖Circn(a, b, c)ℓ
(

y0 − yave1n

)

‖2

≤
∥

∥

∥1 − (a+ c)
(

1 − cos
(2π

n

)

)

+
√
−1(c− a) sin

(

2π

n

)

∥

∥

∥

ℓ

C

‖y0 − yave1n‖2.

This proves that limℓ→+∞ y(ℓ) = yave1n. Also, for α = a+ c, β = c− a and
as t→ 0, we have

− 1

log
(

(

1 − α(1 − cos t)
)2

+ β2 sin2 t
)1/2

=
2

(α− β2)t2
+O(1).

Here, β2 < α because a, c ∈ ]0, 1[. From this, one deduces the upper bound
in (iii).

Now, consider the eigenvalues λn = b+(a+c) cos
(

2π
n

)

+
√
−1(c−a) sin

(

2π
n

)

and λn = b+(a+c) cos
(

(n−1)2π
n

)

+
√
−1(c−a) sin

(

(n−1)2π
n

)

of Circn(a, b, c),

and its associated eigenvectors (cf. Lemma 1.77(ii))

vn =











1
ω
...

ωn−1











∈ Cn, vn =











1
ωn−1

...
ω











∈ Cn. (1.8.4)

Note that the vector vn + vn belongs to Rn. Moreover, its component
yave along the eigenvector 1n is zero. The trajectory y with initial condition

vn +vn satisfies ‖y(ℓ)‖2 = ‖λℓ
nvn +λ

ℓ
nvn‖2 = |λn|ℓ‖vn +vn‖2, and therefore

it will enter B(0n, ε‖vn + vn‖2) only when

ℓ >
log ε−1

− log
∥

∥

∥1 − (a+ c)
(

1 − cos
(

2π
n

)

)

+
√
−1(c− a) sin

(

2π
n

)

∥

∥

∥

C

.

This completes the proof of fact (iii). �

Proof of Theorem 1.80. We prove fact (i) and observe that the proof of
fact (ii) is analogous. Consider the change of coordinates

x(ℓ) = P+

[

x′ave(ℓ)
y(ℓ)

]

= x′ave(ℓ)1n + P+

[

0
y(ℓ)

]

,

where x′ave(ℓ) ∈ R and y(ℓ) ∈ Rn−1. A quick calculation shows that x′ave(ℓ) =
1
n1T

nx(ℓ), and the similarity transformation described in equation (1.6.7)
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implies

y(ℓ+ 1) = Tridn−1(a, b, a) y(ℓ), and x′ave(ℓ+ 1) = (b+ 2a)x′ave(ℓ).

Therefore, xave = x′ave. It is also clear that

x(ℓ+ 1) − xave(ℓ+ 1)1n

= P+

[

0
y(ℓ+ 1)

]

=
(

P+

[

0 0
0 Tridn−1(a, b, a)

]

P−1
+

)

(x(ℓ) − xave(ℓ)1n).

Consider the matrix in parentheses determining the trajectory ℓ 7→ (x(ℓ) −
xave(ℓ)1n). This matrix is symmetric, its singular values are 0 and the singu-
lar values of Tridn−1(a, b, a), and its eigenvectors are 1n and the eigenvectors
of Tridn−1(a, b, a) (padded with an extra zero). These facts are sufficient to
duplicate, step by step, the proof of fact (i) in Theorem 1.79. Therefore, the
trajectory ℓ 7→ (x(ℓ) − xave(ℓ)1n) satisfies the stated properties. �

1.9 EXERCISES

E1.1 (Orthogonal and permutation matrices). Prove that

(i) the set of orthogonal matrices is a group;

(ii) the set of permutation matrices is a group; and

(iii) each permutation matrix is orthogonal.

E1.2 (Doubly stochastic matrices). Show that the set of doubly stochastic matri-
ces is convex and that it contains the set of permutation matrices. Find in the
literature as many distinct proofs of Theorem 1.1 as possible.
Hint: A proof is contained in Horn and Johnson (1985). A second proof method
is based on methods from combinatorics.

E1.3 (Circulant matrices). Given two n×n circulant matrices C1 and C2, show that
the following hold:

(i) CT
1 , C1 + C2 and C1C2 are circulant; and

(ii) C1C2 = C2C1.

E1.4 (Spectral radius and ∞-induced norm of a row-stochastic matrix). Show
that the spectral radius and the ∞-induced norm of a row-stochastic matrix are
1.
Hint: Let A ∈ Rd×d be stochastic. First, show ‖A‖∞ ≤ 1 by direct algebraic ma-
nipulation. Second, use the bound in Lemma 1.5 to show that ρ(A) ≤ 1. Finally,
conclude the proof by noting that 1 is an eigenvalue of A.
Hint: An alternative proof that ρ(A) = 1 is as follows. First, use Geršgorin disks
Theorem 1.2 to show that spec(A) is contained in the unit disk centered at the
origin. Second, note that ρ(A) ≥ 1, since 1 is an eigenvalue of A.

E1.5 (Positive semidefinite matrix defined by a doubly stochastic and irre-
ducible matrix). Let A ∈ Rn×n be doubly stochastic and irreducible. Show
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that the matrix

In − AT A

is positive semidefinite and that its eigenvalue 0 is simple.

E1.6 (M-matrices). This exercise summarizes some properties of the so-called M-
matrices (see Fiedler, 1986). A matrix A ∈ Rn×n is an M-matrix (resp. an M0-
matrix) if

(i) all the off-diagonal elements of A are zero or negative; and

(ii) there exist a nonnegative matrix C ∈ Rn×n and k > ρ(C) (resp. k ≥
ρ(C)) such that A = kIn − C.

Show that:

(i) the matrix B ∈ Rn×n is an M-matrix if

(a) all the off-diagonal elements of B are zero or negative; and

(b) there exists a vector v ∈ Rn with positive entries such that Bv
has positive entries;

(ii) if A is an M0-matrix, irreducible and singular, then there exists x ∈ Rn

with positive entries such that Ax = 0 and rank(A) = n − 1; and

(iii) if A is an M-matrix, then all eigenvalues of A have positive real parts.

E1.7 (Decomposition of a stochastic matrix). Consider the matrix

T =

2
666664

1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
. . .

...
0 . . . 0 1 −1
1
n

1
n

. . . 1
n

1
n

3
777775
∈ R

n×n.

Show that:

(i) T is invertible.

(ii) For a stochastic matrix F ∈ Rn×n, there exist Ferr ∈ R(n−1)×(n−1) and
cerr ∈ R1×(n−1) such that

TFT−1 =

»
Ferr 0(n−1)×1

cerr 1

–
.

Moreover, if F is symmetric, then cerr = 01×(n−1).

E1.8 This exercise establishes two extensions of the LaSalle Invariance Principle. Con-
sider the same setup and assumptions as in Theorem 1.19, and remove the as-
sumption that the set W is closed. Prove the following two conclusions.

(i) Each evolution with initial condition in W approaches a set of the form
V −1(c)∩(S ∪(∂W \ W )), where c is a real constant and S is the largest
positively invariant set contained in {w ∈ W | V (f(w)) = V (w)}.

(ii) Each evolution γ : Z≥0 → W with image(γ) ⊂ W approaches a set of the
form V −1(c)∩S, where c is a real constant and S is the largest positively
invariant set contained in {w ∈ W | V (f(w)) = V (w)}.
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Hint: Regarding part (i), follow the same steps as in the proof of Theorem 1.21 in
Section 1.8.1 with the following difference: even though the set Ω(γ) is not a subset
of W in general, the set Ω(γ)∩W is a subset of W and is positively invariant.

E1.9 (The closed map defined by a finite collection of continuous maps). Let
f1, . . . , fm : X → X be continuous functions, where X is a d-dimensional space
chosen among Rd, Sd, and the Cartesian products Rd1 ×Sd2 , for some d1 +d2 = d.
Define the set-valued map T : X ⇉ X by

T (x) = {f1(x), . . . , fm(x)}.

Show that T is closed on X.

E1.10 (Overapproximation Lemma). Prove Lemma 1.24.

E1.11 (Acyclic digraphs). Let G be an acyclic digraph. Show that:

(i) G contains at least one sink, that is, a vertex without out-neighbors;

(ii) G contains at least one source, that is, a vertex without in-neighbors;
and

(iii) in an appropriate ordering of the vertices of G, the adjacency matrix A
is lower-triangular, that is, all its entries above the main diagonal vanish.
Hint: Order the vertices of G according to their distance to a sink.

E1.12 (A sufficient condition for a matrix to be primitive). Show that if A ∈
Rn×n is nonnegative, irreducible, and has a positive element on the diagonal, then
A is primitive. Give an example that shows that this condition is sufficient but
not necessary, that is, find a primitive matrix with no positive element on the
diagonal.
Hint: See Exercise E1.23 below for a candidate matrix.

E1.13 (Condensation digraph). This exercise studies the decomposition of a digraph
G in its strongly connected components. A subgraph H is a strongly connected
component of G if H is strongly connected and any other subgraph of G strictly
containing H is not strongly connected. The condensation digraph of G, denoted
C(G), is defined as follows: the nodes of C(G) are the strongly connected compo-
nents of G, and there exists a directed edge in C(G) from node H1 to node H2 if
and only if there exists a directed edge in G from a node of H1 to a node of H2.
Show that:

(i) every condensation digraph is acyclic;

(ii) a digraph contains a globally reachable node if and only if its condensa-
tion digraph contains a globally reachable node; and

(iii) a digraph contains a directed spanning tree if and only if its condensation
digraph contains a directed spanning tree.

E1.14 (Incidence matrix). Given a weighted digraph G of order n, choose an arbi-
trary ordering of its edges. Define the incidence matrix H(G) ∈ R|E|×n of G by
specifying that the row of H(G) corresponding to edge (i, j) has an entry 1 in
column i, an entry −1 in column j, and all other entries equal to zero. Show that

H(G)T WH(G) = L(G) + L(rev(G)),

where W ∈ R|E|×|E| is the diagonal matrix with aij in the entry corresponding to
edge (i, j).
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E1.15 (From digraphs to stochastic matrices and back). Let G be a weighted di-
graph of order n with adjacency matrix A, out-degree matrix Dout, and Laplacian
matrix L. Define the following matrices:

F1 = (κIn + Dout)
−1(κIn + A), for κ ∈ R>0,

F2 = In − εL, for ε ∈ [0, min{(Dout)
−1
ii | i ∈ {1, . . . , n}}[.

Perform the following tasks:

(i) compute the entries of F1 and F2 as a function of the entries of A(G);

(ii) show that the matrices F1 and F2 are row-stochastic;

(iii) identify the least restrictive conditions on G such that the matrices F1

and F2 are doubly stochastic; and

(iv) determine under what conditions a row-stochastic matrix can be writ-
ten in the form F1, or F2 for some appropriate digraph (and for some
appropriate scalars κ and ε).

E1.16 (Metropolis–Hastings weights from the theory of Markov chains). Given
an undirected graph G of order n, define a weighted adjacency matrix A with
entries

aij =
1

1 + max{|N (i)|, |N (j)|} ,

for (i, j) ∈ E. Perform the following tasks:

(i) show that the weighted degree of any vertex is strictly smaller than 1;

(ii) use (i) to justify that ε = 1 can be chosen in Exercise E1.15 for the
construction of the matrix F2; and

(iii) express the exponential convergence factor rexp(F2) as a function of the
eigenvalues of the Laplacian of G.

E1.17 (Some properties of products of stochastic matrices). Show the following
holds:

(i) If the matrices A1, . . . , Ak are nonnegative, row-stochastic, or doubly
stochastic, respectively, then their product A1 · · ·Ak is non-negative, row-
stochastic, or doubly stochastic, respectively.

(ii) If the nonnegative matrices A1, . . . , Ak have strictly positive diagonal
elements, then their product A1 · · ·Ak has strictly positive diagonal ele-
ments.

(iii) Assume that G1, . . . , Gk are digraphs associated with the nonnegative
matrices A1, . . . , Ak and that these matrices have strictly positive diag-
onal elements. If the digraph G1 ∪ . . .∪Gk is strongly connected, then
the matrix A1 · · ·Ak is irreducible.

E1.18 (Disagreement function). The quadratic form associated with a symmetric
matrix B ∈ Rn×n is the function x 7→ xT Bx. Given a digraph G of order n, the
disagreement function ΦG : Rn → R is defined by

ΦG(x) =
1

2

nX

i,j=1

aij(xj − xi)
2. (E1.1)
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Show that the following are true:

(i) the disagreement function is the quadratic form associated with the sym-
metric positive-semidefinite matrix

P (G) =
1

2
(Dout(G) + Din(G) − A(G) − A(G)T );

(ii) P (G) = 1
2

`
L(G) + L(rev(G))

´
.

E1.19 (Weight-balanced graphs and connectivity). Let G be a weighted digraph
and let A be a nonnegative n × n matrix. Show the following statements:

(i) if G is weight-balanced and contains a globally reachable node, then it is
strongly connected;

(ii) if A is doubly stochastic and its associated weighted digraph contains a
globally reachable node, then its associated weighted digraph is strongly
connected; and

(iii) if A is doubly stochastic and a column of
Pn−1

k=0 Ak is positive, thenPn−1
k=0 Ak is positive.

E1.20 (The Laplacian matrix is positive semidefinite). Without relying on the
Geršgorin disks Theorem 1.2, show that if the weighted digraph G is undirected,
then the matrix L(G) is symmetric positive semidefinite. (Note that the proof of
statement (i) in Theorem 1.37 relies on Geršgorin disks Theorem 1.2).

E1.21 (Properties of the BFS algorithm). Prove Lemma 1.28.

E1.22 (LCR algorithm). Consider the following LCR algorithm for leader election:

(i) Give a UID assignment to each processor for which Ω(n2) messages are
sent; and

(ii) give a UID assignment to each processor for which only O(n) messages
are sent.

(iii) Show that the average number of messages sent is O(n log n), where the
average is taken over all possible ordering of the processors on the ring,
each ordering assumed to be equally likely.

E1.23 (Properties of a stochastic matrix and its associated digraph). Consider
the stochastic matrices

A1 =
1

2

2
4

0 1 1
1 0 1
1 1 0

3
5 and A2 =

1

2

2
664

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

3
775 .

Define and draw the associated digraphs G1 and G2. Without relying on the
characterization in Propositions 1.33 and 1.35, perform the following tasks:

(i) show that the matrices A1 and A2 are irreducible and that the associated
digraphs G1 and G2 are strongly connected;

(ii) show that the matrices A1 and A2 are primitive and that the associated
digraphs G1 and G2 are strongly connected and aperiodic; and

(iii) show that the averaging algorithm associated with A2 converges in a
finite number of steps.

89

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

E1.24 (Compactness of the set of non-degenerate matrices with respect to a
parameter). Show that, for any α ∈ ]0, 1], the set of non-degenerate matrices
with respect to α is compact.

E1.25 (Laplacian flow: Olfati-Saber and Murray, 2004). Let G be a weighted
directed graph with a globally reachable node. Define the Laplacian flow on Rn

by

ẋ = −L(G)x,

or, equivalently in components,

ẋi =
X

j∈Nout(i)

aij(xj − xi), i ∈ {1, . . . , n}.

Perform the following tasks:

(i) Find the equilibrium points of the Laplacian flow.

(ii) Show that, if G is undirected, then the disagreement function (see Exer-
cise E1.18) is monotonically non-increasing along the Laplacian flow.

(iii) Given x0 = ((x0)1, . . . , (x0)n) ∈ Rn, show that the solution t 7→ x(t) of
the Laplacian flow starting at x0 verifies

min{(x0)1, . . . , (x0)n} ≤ xi(t) ≤ max{(x0)1, . . . , (x0)n},

for all t ∈ R≥0. Use this fact to deduce that the solution t 7→ x(t) is
bounded.

(iv) For G undirected, use (i)-(iii) to apply the LaSalle Invariance Principle in
Theorem 1.20 and show that the solutions of the Laplacian flow converge
to diag(Rn).

(v) Find an example G such that, with the notation in Exercise E1.18, the
symmetric matrix L(G)T P (G) + P (G)L(G) is indefinite.
Hint: To show that the matrix is indefinite, it suffices to find x1, x2 ∈
Rn such that x1(L(G)T P (G) + P (G)L(G))x1 < 0 and x2(L(G)T P (G) +
P (G)L(G))x2 > 0.

(vi) Show that the Euler discretization of the Laplacian flow is the Laplacian-
based averaging algorithm.

E1.26 (Log–Sum–Exp consensus: Tahbaz-Salehi and Jadbabaie, 2006). Pick
α ∈ R \ {0} and define the function fα : Rn → R by

fα(x) = α log
“ 1

n

nX

i=1

exi/α
”
.

Show that:

(i) lim
α→0−

fα(x) = min{x1, . . . , xn} and lim
α→0+

fα(x) = max{x1, . . . , xn}; and

(ii) lim
α→+∞

fα(x) = lim
α→−∞

fα(x) =
1

n
(x1 + · · · + xn).

Next, let A ∈ Rn×n be a non-degenerate, doubly stochastic matrix whose associ-
ated digraph contains a globally reachable node. Given such a matrix A, consider
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the discrete-time dynamical system

wi(ℓ + 1) = α log
“ nX

j=1

aij ewj(ℓ)/α
”
.

(iii) Show that w(ℓ) → fα(w(0))1n as ℓ → +∞.

E1.27 (The theory of Markov chains and random walks on graphs). List as
many connections as possible between the theory of averaging algorithms discussed
in Section 1.6.2 and the theory of Markov chains. Some relevant references on
Markov chains include Seneta (1981) and Lovász (1993).
Hint: There is a one-to-one correspondence between averaging algorithms and
Markov chains. A homogeneous Markov chains corresponds precisely to a time-
independent averaging algorithm. A reversible Markov chain corresponds precisely
to a symmetric stochastic matrix.

E1.28 (Distributed hypothesis testing: Rao and Durrant-Whyte, 1993; Olfati-
Saber et al., 2006). Let hγ , for γ ∈ Γ in a finite set Γ, be a set of alternative
hypotheses about an uncertain event. Suppose that n nodes take measurements
zi, for i ∈ {1, . . . , n}, related to the event. Assume that each observation is
conditionally independent of all other observations, given any hypothesis.

(i) Using Bayes’ Theorem and the independence assumption, show that the
a posteriori probabilities satisfy

p(hγ |z1, . . . , zn) =
p(hγ)

p(z1, . . . , zn)

nY

i=1

p(zi|hγ).

(ii) Suppose that the nodes form a undirected unweighted connected syn-
chronous network with adjacency matrix A. Consider the discrete-time
dynamical system

πi(ℓ + 1) =
“
πi(ℓ)

nY

j=1

π
aij

j (ℓ)
”1/(1+dout(i))

.

Fix γ ∈ Γ, set πi(0) = p(zi|hγ), and show that π(ℓ) → n

vuut
nY

i=1

p(zi|hγ)1n

as ℓ → +∞.

(iii) What information does each node need in order to compute the maximum
a posteriori estimate, that is, to estimate the most likely hypothesis?
Hint: Can you compute p(z1, . . . , zn), given knowledge of p(hγ) and ofQn

i=1 p(zi|hγ)?
As a bibliographic note, the variable πi is referred to as the belief in the seminal
work by Pearl (1988).

E1.29 (Bounds on vector norms). Prove Lemma 1.82.

E1.30 (The “n-bugs problem” and cyclic interactions). The “n-bugs problem”
related to the pursuit curves from mathematics, inquires about what the paths of
n bugs, not aligned initially, are when they chase one another. Simple versions of
the problem (e.g., for three bugs starting at the vertices of an equilateral triangle)
were studied as early as the nineteenth century. It was in Watton and Kydon
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(1969) that a general solution for the general n-bugs problem for non-collinear
initial positions was given. The bugs trace out logarithmic spirals that eventually
meet at the same point, and it is not necessary that they move with constant
velocity. Surveys about cyclic pursuit problems are given in the papers in Watton
and Kydon (1969) and Marshall et al. (2004). Cyclic pursuit, has also been studied
recently in the multi-agent and control literature; see, for example Bruckstein
et al. (1991), Marshall et al. (2004), and Smith et al. (2005). In particular, the
paper Marshall et al. (2004) extends the n-bugs problem to the case of n kinematic
unicycles evolving in continuous time.

Consider the simplified scenario of the n-bugs problem placed on a circle of
radius r and suppose that the bugs’ motion is constrained to be on that circle.
Assume that agents are ordered counterclockwise with identities i ∈ {1, . . . , n},
where, for convenience, we identify n + 1 with 1. Denote by pi(ℓ) = (r, θi(ℓ)) the
sequence of positions of bug i, initially at pi(0) = (r, θi(0)). We illustrate two
scenarios of interest in Figure E1.1 and we describe them in some detail below.

θi+1

θi

θi−1

(a)

θi+1

θi

θi−1

(b)

Figure E1.1 An illustration of the n-bugs problem. In (a), agent i looks at the position of
agent i+1 and moves toward it by an amount proportional to their distance.
In (b), agent i looks at the position of agents i + 1 and i − 1 and moves
toward the one which is furthest by an amount proportional to the difference
between the two distances. In both cases, the proportionality constant is k.

Cyclic pursuit. Suppose that each bug is chasing the closest counterclockwise
neighbor (according to the order we have given them on the circle), see
Figure E1.1(a). In other words, each bug feels an attraction toward the
closest counterclockwise neighbor that can be described by the equation

θi(ℓ + 1) = (1 − k)θi(ℓ) + kθi+1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1]. Determine for which values of k the bugs converge to a
configuration for which distc(θi+1, θi) = distc(θi, θi−1) for all i ∈ {1, . . . , n}.
Observe that the bugs will approach this equally spaced configuration while
moving around the circle indefinitely.

Cyclic balancing. Suppose that each bug makes a compromise between chasing
its closest counterclockwise neighbor and the closest clockwise neighbor, see
Figure E1.1(b). In other words, each bug feels an attraction towards the
closest counterclockwise and clockwise neighbors that can be described by
the equation

θi(ℓ + 1) = kθi+1(ℓ) + (1 − 2k)θi(ℓ) + kθi−1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1]. Perform the following two tasks:
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(i) Determine for which values of k the bugs converge to a configuration
for which distc(θi+1, θi) = distc(θi, θi−1) for all i ∈ {1, . . . , n}.

(ii) Show that the bugs will approach this equally spaced configuration
while each of them converges to a stationary position on the circle.

Hint: Rewrite the cyclic pursuit and cyclic balancing systems in terms of the inter-
bug distances, that is, in terms of di(ℓ) = distc(θi+1(ℓ), θi(ℓ)), i ∈ {1, . . . , n}, ℓ ∈
Z≥0. Find the matrices that describe the linear iterations in these new coordinates.
Show that the agreement space, that is, the diagonal set in Rn, is invariant under
the dynamical systems. Finally, determine which values of k make each system
converge to the agreement space. Lemma 1.77 might be of use in this regard.
Regarding part (ii)b), recall that an exponentially decaying sequence is summable.
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Chapter Two

Geometric models and optimization

This chapter presents various geometric objects and geometric optimiza-
tion problems that have strong connections with motion coordination. Ba-
sic geometric notions such as polytopes, centers, partitions, and distances
are ubiquitous in cooperative strategies, coordination tasks, and the inter-
action of robotic networks with the physical environment. The notion of
Voronoi partition finds application in diverse areas such as wireless com-
munications, signal compression, facility location, and mesh optimization.
Proximity graphs provide a natural way to mathematically model the net-
work interconnection topology resulting from the agents’ sensing and/or
communication capabilities. Finally, multicenter functions play the role of
aggregate objective functions in geometric optimization problems. We in-
troduce these concepts here in preparation for the later chapters.

The chapter is organized as follows. We begin by presenting basic geo-
metric constructions. This gives way to introduce the notion of proximity
graphs along with numerous examples. The next section of the chapter
presents geometric optimization problems and multicenter functions, pay-
ing special attention to the characterization of their smoothness properties
and critical points. We end the chapter with three sections on, respectively,
bibliographic notes, proofs of the results presented in the chapter, and ex-
ercises.

2.1 BASIC GEOMETRIC NOTIONS

In this section, we gather some classical geometric constructions that will
be invoked regularly throughout the book.

2.1.1 Polygons and polytopes

For p, q ∈ Rd, we let ]p, q[= {λp+(1−λ)q | λ ∈ ]0, 1[} and [p, q] = {λp+(1−
λ)q | λ ∈ [0, 1]} denote the open segment and closed segment, with extreme
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points p and q, respectively. We let Hp,q = {x ∈ Rd | ‖x− p‖2 ≤ ‖x− q‖2}
denote the closed halfspace of Rd of points closer (in Euclidean distance) to
p than to q. In the plane, we often refer to a halfspace as a halfplane.

As seen in Section 1.2, a set S ⊂ Rd is convex if, for any two points p, q
in S, the closed segment [p, q] is contained in S. The convex hull of a set
is the smallest (with respect to the inclusion) convex set that contains it.
We denote the convex hull of S by co(S). For S = {p1, . . . , pn} finite, the
convex hull can be explicitly described as follows:

co(S) =
{

λ1p1 + · · · + λnpn | λi ≥ 0 and
n

∑

i=1

λi = 1
}

.

Given p and q in Rd and a convex closed set Q ⊂ Rd with p ∈ Q (see
Figure 2.1), define the from-to-inside function by

fti(p, q,Q) =

{

q, if q ∈ Q,

[p, q]∩ ∂Q, if q 6∈ Q.

p

fti(p, q, Q)

q

p

fti(p, q, Q)

q

Figure 2.1 An illustration of the from-to-inside function fti.

The function fti selects the point in the closed segment [p, q] which is
at the same time closest to q and inside Q. Note that fti(p, q,Q) depends
continuously on p and q.

A polygon is a set in R2 whose boundary is the union of a finite number of
closed segments. A polygon is simple if its boundary, regarded as a curve,
is not self-intersecting. We will only consider simple polygons. The closed
segments composing the boundary of a polygon are called edges, and points
resulting from the pairwise intersection between consecutive edges are called
vertices. A convex polygon can be written as:

(i) the convex hull of its set of vertices; or

(ii) the intersection of halfplanes defined by its edges.
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Two vertices whose open segment is contained in the interior of the polygon
define a diagonal. To each vertex of a polygon we associate an interior and
an exterior angle. A vertex is strictly convex (resp. strictly nonconvex ) if its
interior angle is strictly smaller (resp. greater) than π radians. A polygon
is nonconvex if it has at least one strictly concave vertex. The perimeter
of a polygon is the length of its boundary, that is, the sum of the lengths
of its edges. A polytope is the generalization of the notion of polygon to
Rd, for d ≥ 3. In this book, we will not consider nonconvex polytopes in
dimension larger than 2. As for convex polygons, a (convex) polytope in Rd

can be defined as either the convex hull of a finite set of points in Rd or the
bounded intersection of a finite set of halfspaces. A d − 1 face (or a facet)
of a polytope is the intersection between the polytope and the boundary of
a closed halfspace that defines the polytope. A d− 2 face is a d− 2 face of
a facet of the polytope. The faces of dimensions 0, 1, and d − 1 are called
vertices, edges, and faces, respectively. For a convex polytope Q, we will
refer to them as Ve(Q), Ed(Q), and Fa(Q), respectively.

2.1.2 Nonconvex geometry

In this section, we gather some basic notions on nonconvex geometry. We
consider environments that include nonconvex polygons as a particular case.

We begin with some visibility notions. Given S ⊂ Rd, two points p, q ∈ S
are visible to each other if the closed segment [p, q] is contained in S. The
visibility set Vi(p;S) is the set of all points in S visible from p. Given r > 0,
the range-limited visibility set Vidisk(p;S) = Vi(p;S)∩B(p, r) is the set of all
points in S within a distance r and visible from p. The set S is star-shaped if
there exists p ∈ S such that Vi(p;S) = S. The kernel set of S is comprised of
all the points with this property, that is, kernel(S) = {p ∈ S | Vi(p;S) = S}.
Trivially, any convex set is star-shaped. Given δ ∈ R>0, the δ-contraction of
S is the set Sδ = {p ∈ S | dist(p, ∂S) ≥ δ}. Note that if two points p, q ∈ S
are visible to each other in Sδ, then any point within distance δ of p and any
point within distance δ of q are visible to each other. Figure 2.2 illustrates
these visibility notions.

Next, we introduce various concavity notions. Given S ⊂ Rd connected
and closed, p ∈ ∂S is strictly concave if, for any ε ∈ R>0, there exist
q1, q2 ∈ B(p, ε)∩ ∂S such that [q1, q2] 6⊂ S. This definition coincides with
the notion of strictly concave vertex when the set S is a polygon. A strict
concavity of S is either an isolated strictly concave point or a concave arc,
that is, a connected set of strictly concave points. An allowable environment
S ⊂ R2 is a set that satisfies the following properties: it is closed, simply
connected, has a finite number of strict concavities, and its boundary can
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p2

p1

q1

q2

Vidisk(p2, S)

Vi(p1; S) Vi(p1; Sδ)

Figure 2.2 An illustration of various visibility notions. The visibility set Vi(p1; S) from p1

in S, the visibility set Vi(p1; Sδ) from p1 in Sδ, and the range-limited visibility
set Vidisk(p2; S) from p2 in S are depicted in light gray. The dashed curve in
the interior of S corresponds to the boundary of the δ-contraction of S. The
points p2 and q1 are visible to each other in Sδ. The points q1 and q2 are visible
to each other in S, but they are not visible to each other in Sδ.

be described by a continuous and piecewise continuously differentiable curve
which is not differentiable at most at a finite number of points. Figure 2.3
shows a sample allowable environment. Given an allowable environment S,
let a point v belonging to a concave arc have the property that the boundary
of S is continuously differentiable at v. The internal tangent halfplane HS(v)
is the closed halfplane whose boundary is tangent to ∂S at v and whose
interior does not contain any points of the strict concavity (see Figure 2.3).

The following result presents an interesting property of allowable environ-
ments. Its proof is left to the reader.

Lemma 2.1 (Contraction of allowable environments). Given an al-
lowable environment S, the δ-contraction Sδ is also allowable for sufficiently
small δ ∈ R>0 and does not have isolated strictly concave points. Further-
more, the boundary of Sδ is continuously differentiable at the concavities.

Lemma 2.1 implies that the internal tangent halfplane is well-defined at
any strict concavity of the δ-contraction Sδ.

A set S ⊂ X is relatively convex in X ⊂ Rd if, for any two points p,
q in S, the shortest curve in X that connects p and q is contained in S.
Relatively convex sets in Rd are just convex sets. The relative convex hull
of a set S in X is the smallest (with respect to the operation of inclusion)
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HS(v) v

p1

p2 p3

p4

p5

p6

Figure 2.3 An allowable environment S. The curved portion of the boundary is a concave
arc. The vertices whose interior angle is 3π/2 radians are isolated strictly
concave points. The relative convex hull of {p1, . . . , p6} in S is depicted in
light gray. Finally, the dashed line represents the boundary of the internal
tangent halfplane HS(v) tangent to ∂S at v.

relatively convex set in X that contains S (see Figure 2.3). We denote the
relative convex hull of S in X by rco(S;X). The (relative) perimeter of S
in X is the length of the shortest measurable closed curve contained in X
that encloses S.

2.1.3 Geometric centers

Let X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 + d2. Recall our convention
(cf., Section 1.1.2) that, unless otherwise noted, Rd is endowed with the
Euclidean distance, Sd is endowed with the geodesic distance, and Rd1 ×Sd2

is endowed with the Cartesian product distance (dist2,distg).

The circumcenter of a bounded set S ⊂ X, denoted by CC(S), is the cen-
ter of the closed ball of minimum radius that contains S. The circumradius
of S, denoted by CR(S), is the radius of this ball1. The circumcenter is
always unique.

The computation of the circumcenter and the circumradius of a polytope
Q ⊂ Rd is a strictly convex problem and, in particular, a quadratically
constrained linear program in p (the center) and r (the radius). It consists
of minimizing the radius r of the ball centered at p subject to the constraints
that the distance between q and each of the polygon vertices is smaller than

1Note that the definition of circumcenter given here is in general different from the classical
notion of circumcenter of a triangle, that is, the center of the circle passing through the three
vertices of the triangle.
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or equal to r. Formally, the problem can be expressed as

minimize r ,

subject to ‖q − p‖2
2 ≤ r2, for all q ∈ Ve(Q). (2.1.1)

Next, we summarize some useful properties of the circumcenter in Euclidean
space; see Exercise E2.1 for their proofs. In the following result, for S ∈
F(Rd) with d = 1, we let Ve(co(S)) denote the set of extreme points of the
interval co(S).

Lemma 2.2 (Properties of the circumcenter in Euclidean space).
Let S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2. The following properties hold:

(i) CC(S) ∈ co(S) \ Ve(co(S)); and

(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r),
then ]p,CC(S)[ has a nonempty intersection with B(p+q

2 , r
2) for all

q ∈ co(S).

Figure 2.4 The circumcenter and circumradius (left), and incenter and inradius (right) of
a convex polygon.

Given X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 + d2, the incenter,
or Chebyshev center of a compact set S ⊂ X, denoted by IC(S), is the set
containing the centers of all closed balls of maximum radius contained in S.
The inradius of S, denoted by IR(S), is the common radius of any of these
balls.

The computation of the incenter and the inradius of a polytope Q ⊂ Rd is
a convex problem and, in particular, a linear program in p and r. It consists
of maximizing the radius r of the ball centered at p subject to the constraints
that the distance between p and each of the polytope facets is greater than
or equal to r. Formally, the problem can be expressed as follows. For each
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f ∈ Fa(Q), select a point qf ∈ Q belonging to f . Then, we set

maximize r ,

subject to (qf − p) · nout ≥ r , for all f ∈ Fa(Q), (2.1.2)

where nout denotes the normal to the face f pointing toward the exterior of
the polytope. The incenter of a polytope is not necessarily unique (consider,
for instance, the case of a rectangle).

In Euclidean space, X = Rd, we refer to a bounded measurable function
φ : Rd → R≥0 as a density on Rd. The (generalized) area and the centroid
(also called center of mass) of a bounded measurable set S ⊂ Rd with respect
to φ, denoted by Aφ(S) and CMφ(S) respectively, are given by

Aφ(S) =

∫

S
φ(q)dq, CMφ(S) =

1

Aφ(S)

∫

S
qφ(q)dq.

When the function φ that is being used is clear from the context, we simply
refer to the area and the centroid of S. The centroid can alternatively be
defined as follows. Define the polar moment of inertia of S about p ∈ S by

Jφ(S, p) =

∫

S
‖q − p‖2

2φ(q)dq.

Then, the centroid of S is precisely the point p ∈ S that minimizes the polar
moment of inertia of S about p. This can be easily seen from the Parallel
Axis Theorem (Hibbeler, 2006), which states that

Jφ(S, p) = Jφ(S,CMφ(S)) + Aφ(S)‖p− CMφ(S)‖2
2.

Remark 2.3 (Computation of geometric centers in the plane). The
circumcenter, incenter, and centroid of a polygon can be computed in several
ways. A simple procedure to compute the circumcenter consists of enumer-
ating all pairs and triplets of vertices of the polygon, computing the centers
and radiuses of the balls passing through them, and selecting the ball with
the smallest radius that encloses the polygon. An alternative, more effi-
cient, way of computing the circumcenter is to use the formulation (2.1.1).
A convex quadratically constrained linear program is a particular case of a
semidefinite-quadratic-linear program (SQLP). Several freely available nu-
merical packages exist to solve SQLP problems; for example, SDPT3 (Tu-
tuncu et al., 2003). The computation of the incenter set of a polygon can
be performed via linear programming using the formulation (2.1.2). Finally,
the centroid of a polygon can be computed with any numerical routine that
accurately approximates the integral of a function over a planar domain. •
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2.1.4 Voronoi and range-limited Voronoi partitions

A partition of a set S is a subdivision of S into connected subsets that are
disjoint except for their boundary. Formally, a partition of S is a collection
of closed connected sets {W1, . . . ,Wm} ⊂ P(S) that verify

S = ∪m
i=1Wi and int(Wj)∩ int(Wk) = ∅,

for j, k ∈ {1, . . . ,m}.

Definition 2.4 (Voronoi partition). Given a distance function dist :
X × X → R≥0, a set S ⊂ X and n distinct points P = {p1, . . . , pn} in S,
the Voronoi partition of S generated by P is the collection of sets V(P) =
{V1(P), . . . , Vn(P)} ⊂ P(S) defined by, for each i ∈ {1, . . . , n},

Vi(P) = {q ∈ S | dist(q, pi) ≤ dist(q, pj), for all pj ∈ P \ {pi}}. •

In other words, Vi(P) is the set of the points of S that are closer to pi

than to any of the other points in P. We refer to Vi(P) as the Voronoi cell
of pi. Unless explicitly noted otherwise, we compute the Voronoi partition
according to the following conventions:

• for X = Rd, with respect to the Euclidean distance;

• for X = Sd, with respect to the geodesic distance; and

• for X = Rd1 × Sd2 , d1 + d2 = d, with respect to the Cartesian product
distance determined by dist2 on Rd1 and distg on Sd2 .

Figure 2.5 shows an example of the Voronoi partition of the circle gener-
ated by five points. In the Euclidean case, the Voronoi cell of pi is equal to
the intersection of half-spaces determined by pi and the other locations in
P, and as such it is a convex polytope. The left plot in Figure 2.6 shows
an example of the Voronoi partition of a convex polygon generated by 40
points.

Definition 2.5 (r-limited Voronoi partition). Given a distance function
dist : X ×X → R≥0, a set S ⊂ X, n distinct points P = {p1, . . . , pn} in S,
and a positive real number r ∈ R>0, the r-limited Voronoi partition inside
S generated by P is the collection of sets Vr(P) = {V1,r(P), . . . , Vn,r(P)} ⊂
P(S) defined by

Vi,r(P) = Vi(P)∩B(pi, r), i ∈ {1, . . . , n}. •

Note that the r-limited Voronoi partition inside S is precisely the Voronoi
partition of the set ∪n

i=1B(pi, r)∩S. We will refer to Vi,r(P) as the r-limited
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Figure 2.5 Voronoi partition of the circle generated by five points. The dashed segments
correspond to the Voronoi cells of each individual point.

Figure 2.6 Voronoi partition of a convex polygon (left) and r-limited Voronoi partition
inside a convex polygon (right) generated by 40 points.

Voronoi cell of pi. The right-hand plot in Figure 2.6 shows an example of the
r-limited Voronoi partition inside a convex polygon generated by 40 points.

Let X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 + d2. Given a density φ
on X, a set of n distinct points P = {p1, . . . , pn} in S ⊂ X is:

(i) A centroidal Voronoi configuration if each point is the centroid of
its own Voronoi cell, that is, pi = CMφ(Vi(P)).

(ii) An r-limited centroidal Voronoi configuration, for r ∈ R>0, if each
point is the centroid of its own r-limited Voronoi cell, that is, pi =
CMφ(Vi,r(P)). If r ≥ diam(S), then an r-limited centroidal Voronoi
configuration is a centroidal Voronoi configuration.

(iii) A circumcenter Voronoi configuration if each point is the circum-
center of its own Voronoi cell, that is, pi = CC(Vi(P)).

(iv) An incenter Voronoi configuration if each point is an incenter of its
own Voronoi cell, that is, pi ∈ IC(Vi(P)).
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Figure 2.7 illustrates of the various notions of center Voronoi configurations.

Figure 2.7 From left to right, centroidal, r-limited centroidal, circumcenter, and incenter
Voronoi configurations composed by 16 points in a convex polygon. Darker
blue-colored areas correspond to higher values of the density φ.

2.2 PROXIMITY GRAPHS

Roughly speaking, a proximity graph is a graph whose vertex set is a set of
distinct points and whose edge set is a function of the relative locations of
the point set. Proximity graphs appear in computational geometry. In this
section, we study this important notion in detail following the presentation
by Cortés et al. (2005).

Definition 2.6 (Proximity graph). Assume that X is a d-dimensional
space chosen among Rd, Sd, and the Cartesian products Rd1 × Sd2 , for some
d1 + d2 = d. For a set S ⊂ X, let G(S) be the set of all undirected graphs
whose vertex set is an element of F(S). A proximity graph G : F(S) → G(S)
associates to a set of distinct points P = {p1, . . . , pn} ⊂ S an undirected
graph with vertex set P and whose edge set is given by EG(P) ⊆ {(p, q) ∈
P × P | p 6= q}. •

Note that in a proximity graph a point cannot be its own neighbor. From
this definition, we observe that the distinguishing feature of proximity graphs
is that their edge sets change with the location of their vertices. It is also
possible to define proximity graphs that associate to each point set a digraph,
but we will not consider them here.

Examples of proximity graphs on X, where we recall that dist = dist2 if
X = Rd, dist = distg if X = Sd, and dist = (dist2,distg) if X = Rd1 × Sd2 ,
include the following:

(i) The complete graph Gcmplt where any two points are neighbors.
When convenient, we may view the complete graph as weighted
by assigning the weight dist(pi, pj) to the edge (pi, pj) ∈ EGcmplt

(P).

(ii) The r-disk graph Gdisk(r), for r ∈ R>0, where two points are neigh-
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bors if they are located within a distance r, that is, (pi, pj) ∈
EGdisk(r)(P) if dist(pi, pj) ≤ r.

(iii) The Delaunay graph GD, where two points are neighbors if their
corresponding Voronoi cells intersect, that is, (pi, pj) ∈ EGD

(P) if
Vi(P) ∩ Vj(P) 6= ∅.

(iv) The r-limited Delaunay graph GLD(r), for r ∈ R>0, where two points
are neighbors if their corresponding r

2 -limited Voronoi cells intersect,
that is, (pi, pj) ∈ EGLD(r)(P) if Vi, r

2
(P)∩Vj, r

2
(P) 6= ∅.

(v) The relative neighborhood graph GRN, where two points are neigh-
bors if their associated open lune (cf. Section 1.1.2) does not contain
any point in P, that is, (pi, pj) ∈ EGRN

(P) if, for all pk ∈ P, k 6∈ {i, j}
pk 6∈ B(pi,dist(pi, pj))∩B(pj ,dist(pi, pj)).

Figure 2.8 shows examples of these proximity graphs in the plane.

(a) Gcmplt (b) Gdisk(r) (c) GD

(d) GLD(r) (e) GRN

Figure 2.8 Proximity graphs in R2. From left to right, in the first row, complete, r-
disk, and Delaunay, and in the second row, r-limited Delaunay and relative
neighborhood for a set of 15 points. When appropriate, the geometric objects
determining the edge relationship are plotted in lighter gray.

Additional examples of proximity graphs in the Euclidean space include
the following:

104

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

(vi) The Gabriel graph GG, where two points are neighbors if the ball
centered at their midpoint and passing through both of them does
not contain any point in P, that is, (pi, pj) ∈ EGG

(P) if pk 6∈
B

(pi+pj

2 , dist(pi,pj)
2

)

for all pk ∈ P.

(vii) The r-∞-disk graph G∞-disk(r), for r ∈ R>0, where two points are
neighbors if they are located within L∞-distance r, that is, (pi, pj) ∈
EG∞-disk(r)(P) if dist∞(pi, pj) ≤ r.

(viii) The Euclidean minimum spanning tree of a proximity graph G, de-
noted by GEMST,G , that assigns to each P a minimum-weight span-
ning tree (cf., Section 1.4.4.4) of G(P) with weighted adjacency ma-
trix aij = ‖pi − pj‖2, for (pi, pj) ∈ EG(P). If G(P) is not connected,
then GEMST,G(P) is the union of Euclidean minimum spanning trees
of its connected components. When G is the complete graph, we
simply denote the Euclidean minimum spanning tree by GEMST.

(ix) the visibility graph Gvis,Q in an allowable environment Q in R2,
where two points are neighbors if they are visible to each other,
that is, (pi, pj) ∈ EGvis,Q

(P) if the closed segment [pi, pj ] from pi to
pj is contained in Q.

(x) The range-limited visibility graph Gvis-disk,Q in an allowable environ-
ment Q in R2, where two points are neighbors if they are visible to
each other and their distance is no more than r, that is, (pi, pj) ∈
EGvis-disk,Q

(P) if (pi, pj) ∈ EGvis,Q
(P) and (pi, pj) ∈ EGdisk(r)(P).

Figure 2.9 shows examples of these proximity graphs in the plane; Fig-
ure 2.10 shows examples of these proximity graphs in a planar nonconvex
environment; and Figure 2.11 shows example graphs in three-dimensions.

(a) GG (b) G∞-disk(r) (c) GEMST

Figure 2.9 Proximity graphs in R2. From left to right, Gabriel graph, r-∞-disk graph, and
Euclidean minimum spanning tree for 15 points. In two images, the geometric
objects determining the edge relationship are plotted in light gray.

As for standard graphs, let us alternatively describe the edge set by means
of the sets of neighbors of the individual graph vertices. To each proximity
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(a) Gvis,Q (b) Gvis-disk,Q

Figure 2.10 The visibility and range-limited visibility graphs for 8 agents in an allowable
environment. The geometric objects determining the edge relationship are
plotted in light gray.

(a) Gdisk(r) (b) GG (c) GRN

Figure 2.11 Proximity graphs in R3. From left to right, r-disk, relative neighborhood,
and Gabriel graphs for a set of 25 points.

graph G, each p ∈ X and each P = {p1, . . . , pn} ∈ F(X), we associate the
set of neighbors map NG : X × F(X) → F(X) defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪{p})}.
Typically, p is a point in P, but the definition is well-posed for any p ∈
X. Under the assumption that P does not contain repeated elements, the
definition will not lead to counterintuitive interpretations later. Given p ∈
X, it is convenient to define the map NG,p : F(X) → F(X) by NG,p(P) =
NG(p,P).

A proximity graph G1 is a subgraph of a proximity graph G2, denoted G1 ⊂
G2, if G1(P) is a subgraph of G2(P) for all P ∈ F(X). The following result,
whose proof is given in Section 2.5.1, summarizes the subgraph relationships
in the Euclidean case among the various proximity graphs introduced above.
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Theorem 2.7 (Subgraph relationships among some standard prox-
imity graphs on Rd). For r ∈ R>0, the following statements hold:

(i) GEMST ⊂ GRN ⊂ GG ⊂ GD; and

(ii) GG ∩Gdisk(r) ⊂ GLD(r) ⊂ GD ∩Gdisk(r).

Note that the inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict; this
counterintuitive fact is discussed in Exercise E2.3. Additionally, since GEMST

is by definition connected, Theorem 2.7(i) implies that GRN, GG, and GD are
connected. The connectivity properties of Gdisk(r) are characterized in the
following result.

Theorem 2.8 (Connectivity properties of some standard proximity
graphs on Rd). For r ∈ R>0, the following statements hold:

(i) GEMST ⊂ Gdisk(r) if and only if Gdisk(r) is connected; and

(ii) GEMST ∩Gdisk(r), GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) have the
same connected components as Gdisk(r) (i.e., for all point sets P ∈
F(Rd), all graphs have the same number of connected components
consisting of the same vertices).

The proof of this theorem is given in Section 2.5.1. Note that in Theo-
rem 2.8, fact (ii) implies (i).

2.2.1 Spatially distributed proximity graphs

We now consider the following loosely stated question: When does a given
proximity graph encode sufficient information to compute another proximity
graph? For instance, if a node knows the position of its neighbors in the
complete graph (i.e., of every other node in the graph), then it is clear that
the node can compute its neighbors with respect to any proximity graph.
Let us formalize this idea. A proximity graph G1 is spatially distributed over
a proximity graph G2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

,

that is, any node informed about the location of its neighbors with respect
to G2 can compute its set of neighbors with respect to G1.

Clearly, any proximity graph is spatially distributed over the complete
graph. It is straightforward to deduce that if G1 is spatially distributed over
G2, then G1 is a subgraph of G2. The converse is in general not true. For
instance, GD ∩ Gdisk(r) is a subgraph of Gdisk(r), but GD ∩ Gdisk(r) is not
spatially distributed over Gdisk(r); see Exercise E2.4.
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The following result identifies proximity graphs which are spatially dis-
tributed over Gdisk(r).

Proposition 2.9 (Spatially distributed graphs over the disk graph).
The proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r) are spatially
distributed over Gdisk(r).

Remark 2.10 (Computation of the Delaunay graph over the r-disk
graph). In general, for a fixed r ∈ R>0, GD is not spatially distributed over
Gdisk(r). However, for a given P ∈ F(X), it is always possible find r such
that GD(P ) is spatially distributed over Gdisk(r)(P). This is a consequence
of the following observations. Given P ∈ F(X), define the convex sets

W (pi, r) = B(pi, r) ∩
(

∩‖pi−pj‖≤r Hpi,pj

)

, i ∈ {1, . . . , n},
where we recall thatHp,x is the half-space of points q in Rd with the property
that ‖q− p‖2 ≤ ‖q−x‖2. Note that the intersection B(pi, r)∩Vi is a subset
of W (pi, r). Provided that r is twice as large as the maximum distance
between pi and the vertices of W (pi, r), then all Delaunay neighbors of pi

are within distance r from pi. Equivalently, the half-space Hpi,p determined
by pi and a point p outside B(pi, r) does not intersect W (pi, r). Therefore,
the equality Vi = W (pi, r) holds. For node i ∈ {1, . . . , n}, the minimum
adequate radius is then

ri,min = 2 max{‖pi − q‖2 | q ∈W (pi, ri,min)}.
The minimum adequate radius across the overall network is then rmin =
maxi∈{1,...,n} ri,min. The algorithm presented in Cortés et al. (2004) builds
on these observations to compute the Voronoi partition of a bounded set
generated by a pointset in a distributed way. •

2.2.2 The locally cliqueless graph of a proximity graph

Given a proximity graph, it is sometimes useful to construct another prox-
imity graph that has fewer edges and the same number of connected compo-
nents. This is certainly the case when optimizing multi-agent cost functions
in which the proximity graph edges describe pairwise constraints between
agents. Additionally, the construction of the new proximity graph should
be spatially distributed over the original proximity graph. Here, we present
the notion of locally cliqueless graph of a proximity graph.

Let G be a proximity graph in the Euclidean space. The locally cliqueless
graph Glc,G of G is the proximity graph defined by: (pi, pj) ∈ EGlc,G

(P) if
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Figure 2.12 Locally cliqueless graph Glc,Gvis,Q of the visibility graph Gvis,Q for the node
configuration shown in Figure 2.9(d).

(pi, pj) ∈ EG(P) and

(pi, pj) ∈ EGEMST
(P ′),

for any maximal clique P ′ of (pi, pj) in G. Figure 2.12 shows an illustration
of this notion. The properties of this construction are summarized in the
following result; for the proof, see Ganguli et al. (2009).

Theorem 2.11 (Properties of the locally cliqueless graph). Let G be
a proximity graph in the Euclidean space. Then, the following statements
hold:

(i) GEMST,G ⊆ Glc,G ⊆ G;

(ii) Glc,G has the same connected components as G; and

(iii) for G = Gdisk(r), Gvis,Q, and Gvis-disk,Q, where r ∈ R>0 and Q is an
allowable environment, Glc,G is spatially distributed over G.

In general, the inclusions in Theorem 2.11(i) are strict.

2.2.3 Proximity graphs over tuples of points

The notion of proximity graph is defined for sets of distinct points P =
{p1, . . . , pn}. However, we will be interested in considering tuples of elements
of X of the form P = (p1, . . . , pn), where pi corresponds to the position of
an agent i of a robotic network. In principle, note that the tuple P might
contain coincident points. In order to reconcile this mismatch between sets
and tuples, we will do the following.

Let iF : Xn → F(X) be the natural immersion of Xn into F(X), that
is, iF(P ) is the point set that contains only the distinct points in P =
(p1, . . . , pn). Note that iF is invariant under permutations of its arguments
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and that the cardinality of iF(p1, . . . , pn) is in general less than or equal to
n. In what follows, P = iF(P ) will always denote the point set associated
to P ∈ Xn. Using the natural inclusion, the notion of proximity graphs can
be naturally extended as follows: given G, we define (with a slight abuse of
notation)

G = G ◦ iF : Xn → G(X).

Additionally, we define the set of neighbors map NG : X ×Xn → F(X) by

NG(p, (p1, . . . , pn)) = NG(p, iF(p1, . . . , pn)).

According to this definition, coincident points in the tuple (p1, . . . , pn) will
have the same set of neighbors. As before, it is convenient to define the
shorthand notation NG,p : Xn → F(X), NG,p(P ) = NG(p, P ) for p ∈ X.

2.2.4 Spatially distributed maps

Given a set Y and a proximity graph G, a map T : Xn → Y n is spatially
distributed over G if there exists a map T̃ : X×F(X) → Y , with the property
that, for all (p1, . . . , pn) ∈ Xn and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(p1, . . . , pn)),

where Tj denotes the jth component of T . In other words, the jth compo-
nent of a spatially distributed map at (p1, . . . , pn) can be computed with only
knowledge of the vertex pj and the neighboring vertices in the undirected
graph G(P ).

When studying coordination tasks and coordination algorithms, it will be
relevant to characterize the spatially distributed features of functions, vector
fields, and set-valued maps with respect to suitable proximity graphs.

Remark 2.12 (Relationship with the notion of spatially distributed
graphs). Note that the proximity graph G1 is spatially distributed over the
proximity graph G2 if and only if the map

P ∈ Xn 7→ (NG1,p1
(P ), . . . ,NG1,pn

(P )) ∈ F(X)n

is spatially distributed over G2. •

2.3 GEOMETRIC OPTIMIZATION PROBLEMS AND

MULTICENTER FUNCTIONS

In this section we consider various interesting geometric optimization prob-
lems. By geometric optimization, we mean an optimization problem induced
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by a collection of geometric objects (see Boltyanski et al., 1999). We shall
pay particular attention to facility location problems, in which service sites
are spatially allocated to fulfill a particular request.

2.3.1 Expected-value multicenter functions

Let S ⊂ Rd be a bounded environment of interest, and consider a density
function φ : Rd → R≥0. For the discussion of this section, only the value of
φ restricted to S is of interest. One can regard φ as a function measuring the
probability that some event takes place over the environment. The larger
the value of φ(q), the more important the location q is. We refer to a non-
increasing and piecewise continuously differentiable function f : R≥0 → R,
possibly with finite jump discontinuities, as a performance. Performance
functions describe the utility of placing a node at a certain distance from
a location in the environment. The smaller the distance, the larger the
value of f , that is, the better the performance. For instance, in servicing
problems, performance functions can encode the travel time or the energy
expenditure required to service a specific destination. In sensing problems,
performance functions can encode the signal-to-noise ratio between a source
with an unknown location and a sensor attempting to locate it.

Given a bounded measurable set S ⊂ Rd, a density function φ, and a
performance function f , let us consider the expected value of the coverage
over any point in S provided by a set of points p1, . . . , pn. Formally, we
define the expected-value multicenter function Hexp : Sn → R by

Hexp(p1, . . . , pn) =

∫

S
max

i∈{1,...,n}
f(‖q − pi‖2)φ(q)dq. (2.3.1)

The definition of Hexp can be interpreted as follows: for each location q ∈ S,
consider the best coverage of q among those provided by each of the nodes
p1, . . . , pn, which corresponds to the value maxi∈{1,...,n} f(‖q − pi‖2). Then,
evaluate the performance by the importance φ(q) of the location q. Finally,
sum the resulting quantity over all the locations of the environment S, to
obtain Hexp(p1, . . . , pn) as a measure of the overall coverage provided by
p1, . . . , pn.

Given the meaning of Hexp, we seek to solve the following geometric op-
timization problem:

maximize Hexp(p1, . . . , pn), (2.3.2)

that is, we seek to determine a set of configurations p1, . . . , pn that maximize
the value of the multicenter function Hexp. An equivalent formulation of this
problem is referred to as a continuous p-median problem in the literature
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on facility location (see, e.g., Drezner, 1995). In our discussion, we will
pay special attention to the case when n = 1, which we term the 1-center
problem. For the purpose of solving (2.3.2), note that we can assume that
the performance function satisfies f(0) = 0. This can be done without loss
of generality, since for any c ∈ R, one has

∫

S
max

i∈{1,...,n}
(f(‖q − pi‖2) + c)φ(q)dq = Hexp(p1, . . . , pn) + cAφ(S).

The expected-value multicenter function can be alternatively described in
terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. Let us
define the set

Scoinc = {(p1, . . . , pn) ∈ (Rd)n | pi = pj for some i 6= j},
consisting of tuples of n points, where some of them are repeated. Then, for
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hexp(p1, . . . , pn) =
n

∑

i=1

∫

Vi(P)
f(‖q − pi‖2)φ(q)dq. (2.3.3)

This expression of Hexp is appealing because it clearly shows the result of
the overall coverage of the environment as the aggregate contribution of all
individual nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar decomposition of
Hexp can be written in terms of the distinct points P = iF(p1, . . . , pn).

Inspired by the expression (2.3.3), let us define a more general version
of the expected-value multicenter function. Given (p1, . . . , pn) ∈ Sn and a
partition {W1, . . . ,Wn} ⊂ P(S) of S, let

Hexp(p1, . . . , pn,W1, . . . ,Wn) =
n

∑

i=1

∫

Wi

f(‖q − pi‖2)φ(q)dq. (2.3.4)

Notice that Hexp(p1, . . . , pn) = Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)), for all
(p1, . . . , pn) ∈ Sn \ Scoinc. Moreover, one can establish the following opti-
mality result (see Du et al., 1999).

Proposition 2.13 (Hexp-optimality of the Voronoi partition). Let
P = {p1, . . . , pn} ∈ F(S). For any performance function f and for any
partition {W1, . . . ,Wn} ⊂ P(S) of S,

Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hexp(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if any set in {W1, . . . ,Wn} differs from the cor-
responding set in {V1(P), . . . , Vn(P)} by a set of positive measure. In other
words, the Voronoi partition V(P) is optimal for Hexp among all partitions
of S.
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Proof. Assume that, for i 6= j ∈ {1, . . . , n}, the set int(Wi)∩ int(Vj(P)) has
strictly positive measure. For all q ∈ int(Wi)∩ int(Vj(P)), we know that
‖q−pi‖2 > ‖q−pj‖2. Because f is non-increasing, f(‖q−pi‖2) < f(‖q−pj‖2)
and, since int(Wi)∩ int(Vj(P)) has strictly positive measure,
∫

int(Wi)∩ int(Vj(P))
f(‖q−pi‖2)φ(q)dq <

∫

int(Wi)∩ int(Vj(P))
f(‖q−pj‖2)φ(q)dq.

Therefore, we deduce
∫

Wi

f(‖q − pi‖2)φ(q)dq <

n
∑

j=1

∫

Wi ∩Vj(P)
f(‖q − pj‖2)φ(q)dq,

and the statements follow. �

Different performance functions lead to different expected-value multicen-
ter functions. Let us examine some important cases.

Distortion problem: Consider the performance function f(x) = −x2.
Then, on Sn \ Scoinc, the expected-value multicenter function takes
the form

Hdist(p1, . . . , pn) = −
n

∑

i=1

∫

Vi(P )
‖q − pi‖2

2φ(q)dq = −
n

∑

i=1

Jφ(Vi(P), pi),

where recall that Jφ(W,p) denotes the polar moment of inertia of the
set W about the point p. In signal compression −Hdist is referred to
as the distortion function and is relevant in many disciplines including
vector quantization, signal compression, and numerical integration (see
Gray and Neuhoff, 1998; Du et al., 1999). Here, distortion refers to the
average deformation (weighted by the density φ) caused by reproduc-
ing q ∈ S with the location pi in P = {p1, . . . , pn} such that q ∈ Vi(P).
It is interesting to note that

Hdist(p1, . . . , pn,W1, . . . ,Wn) = −
n

∑

i=1

Jφ(Wi, pi)

= −
n

∑

i=1

Jφ(Wi,CMφ(Wi)) −
n

∑

i=1

Aφ(Wi)‖pi − CMφ(Wi)‖2
2, (2.3.5)

where in the last equality we have used the Parallel Axis Theorem (Hi-
bbeler, 2006). Note that the first term only depends on the partition
of S, whereas the second term also depends on the location of the
points. The following result is a consequence of this observation.
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Proposition 2.14 (Hdist-optimality of centroid locations). Let
{W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any set points
P = {p1, . . . , pn} ∈ F(S),

Hdist

(

CMφ(W1), . . . ,CMφ(Wn),W1, . . . ,Wn

)

≥ Hdist(p1, . . . , pn,W1, . . . ,Wn),

and the inequality is strict if there exists i ∈ {1, . . . , n} for which Wi

has non-vanishing area and pi 6= CMφ(Wi). In other words, the cen-
troid locations CMφ(W1), . . . ,CMφ(Wn) are optimal for Hdist among
all configurations in S.

A consequence of this result is that for the 1-center problem, that
is, when n = 1, the node location that optimizes p 7→ Hdist(p) =
− Jφ(S, p) is the centroid of the set S, denoted by CMφ(S).

Area problem: For a ∈ R>0, consider the performance function f(x) =
1[0,a](x), that is, the indicator function of the closed interval [0, a].
Then, the expected-value multicenter function takes the form

Harea,a(p1, . . . , pn) =
n

∑

i=1

∫

Vi(P)
1[0,a](‖q − pi‖2)φ(q)dq

=
n

∑

i=1

∫

Vi(P)∩B(pi,a)
φ(q)dq

=

n
∑

i=1

Aφ(Vi(P)∩B(pi, a)) = Aφ(∪n
i=1B(pi, a)),

that is, it corresponds to the area, measured according to φ, covered by
the union of the n balls B(p1, a), . . . , B(pn, a). Exercise E2.5 discusses
the 1-center area problem.

Mixed distortion-area problem: For a ∈ R>0 and b ≤ −a2, consider
the performance function f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x). Then,
on Sn \ Scoinc, the expected-value multicenter function takes the form

Hdist-area,a,b(p1, . . . , pn) = −
n

∑

i=1

Jφ(Vi,a(P), pi) + bAφ(Q \ ∪n
i=1B(pi, a)),

that is, it is a combination of the multicenter functions corresponding
to the distortion problem and the area problem. Of special interest to
us is the multicenter function that results from the choice b = −a2.
In this case, the performance function f is continuous, and we simply
write Hdist-area,a. The extension of this function to sets of points and
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partitions of the space reads as follows:

Hdist-area,a(p1, . . . , pn,W1, . . . ,Wn)

= −
n

∑

i=1

(

Jφ(Wi ∩B(pi, a), pi) + a2 Aφ(Wi ∩ (S \B(pi, a)))
)

.

We leave the proof of the following optimality result as a guided exer-
cise for the reader (see Exercise E2.10).

Proposition 2.15 (Hdist-area,a-optimality of centroid locations).
Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any P =
{p1, . . . , pn} ∈ F(S),

Hdist-area,a

(

q∗1, . . . , q
∗
n,W1, . . . ,Wn

)

≥ Hdist-area,a(p1, . . . , pn,W1, . . . ,Wn),

where we have used the shorthands q∗i = CMφ(Wi ∩ B(pi, a)), for i ∈
{1, . . . , n}. Furthermore, the inequality is strict if there exists i ∈
{1, . . . , n} for which Wi has non-vanishing area and pi 6= q∗i .

A consequence of this result is that for the 1-center problem, that is,
when n = 1—the node location that optimizes p 7→ Hdist-area,a(p) =

Jφ(S ∩ B(p, a), p) + a2 Aφ(S \ B(p, a)) is the centroid of the set S ∩
B(p, a), denoted by CMφ(S ∩B(p, a)).

Next, we characterize the smoothness of the expected-value multicenter
function. Before stating the precise result, let us introduce some useful
notation. For a performance function f , let Dscn(f) denote the (finite) set
of points where f is discontinuous. For each a ∈ Dscn(f), define the limiting
values from the left and from the right, respectively, as

f−(a) = lim
x→a−

f(x), f+(a) = lim
x→a+

f(x).

We are now ready to characterize the smoothness of Hexp, whose proof is
given in Section 2.5.3. Before stating the result, recall that the line integral
of a function g : R2 → R over a curve C parameterized by a continuous and
piecewise continuously differentiable map γ : [0, 1] → R2 is defined by

∫

C
g =

∫

C
g(γ)dγ :=

∫ 1

0
g(γ(t)) ‖γ̇(t)‖2 dt,

and is independent of the selected parameterization.

Theorem 2.16 (Smoothness properties of Hexp). Given a set S ⊂ Rd

that is bounded and measurable, a density φ : R → R≥0, and a performance
function f : R≥0 → R, the expected-value multicenter function Hexp : Sn →
R is

115

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

(i) globally Lipschitz2 on Sn; and

(ii) continuously differentiable on Sn \ Scoinc, where for i ∈ {1, . . . , n}
∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
∑

a∈Dscn(f)

(

f−(a) − f+(a)
)

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq, (2.3.6)

where nout is the outward normal vector to B(pi, a). Therefore, the gradient
of Hexp, interpreted as a map from Sn to Rn, is spatially distributed (in the
sense defined in Section 2.2.4) over the Delaunay graph GD.

Let us discuss how Theorem 2.16 particularizes to the distortion, area,
and mixed distortion-area problems.

Distortion problem: In this case, the performance function does not have
any discontinuities and, therefore, the second term in (2.3.6) vanishes.
The gradient of Hdist on Sn \ Scoinc then takes the form, for each
i ∈ {1, . . . , n},

∂Hdist

∂pi
(P ) = 2 Aφ(Vi(P))(CMφ(Vi(P)) − pi),

that is, the ith component of the gradient points in the direction of
the vector going from pi to the centroid of its Voronoi cell. The critical
points of Hdist are therefore the set of centroidal Voronoi configurations
in S (cf. Section 2.1.4). This is a natural generalization of the result
for the 1-center case, where the optimal node location is the centroid
CMφ(S).

Area problem: In this case, the performance function is differentiable ev-
erywhere except at a single discontinuity, and its derivative is identi-
cally zero. Therefore, the first term in (2.3.6) vanishes. The gradient
of Harea,a on Sn \ Scoinc then takes the form, for each i ∈ {1, . . . , n},

∂Harea,a

∂pi
(P ) =

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq,

where nout is the outward normal vector to B(pi, a). The gradient
is an average of the normal at each point of Vi(P)∩ ∂B(pi, a), as il-
lustrated in Figure 2.13. The critical points of Harea,a correspond to
configurations with the property that each pi is a local maximum for
the area of Vi,a(P ) = Vi(P )∩B(pi, a) at fixed Vi(P ). We refer to these

2Given S ⊂ Rh, a function f : S → Rk is globally Lipschitz if there exists K ∈ R>0 such that
‖f(x − y)‖2 ≤ K‖x − y‖2 for all x, y ∈ S.
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Figure 2.13 The gradient of the area function when the density function is constant. The
component of the gradient corresponding to the rightmost node is zero; there
is no incentive for this node to move in any particular direction. The compo-
nent of the gradient for each of the three leftmost agents is non-zero; roughly
speaking, by moving along the gradient directions, these agents decrease the
overlapping among their respective disk and cover new regions of the space.

configurations as a-limited area-centered Voronoi configurations. This
is a natural generalization of the result for the 1-center case, where the
optimal node location maximizes Aφ(S ∩B(p, a)) (cf., Exercise E2.5).

Mixed distortion-area problem: In this case, the gradient of the multi-
center function Hdist-area,a,b is a combination of the gradients of Hdist

and Harea,a. Specifically, one has for each i ∈ {1, . . . , n},
∂Hdist-area,a,b

∂pi
(P ) = 2 Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi)

− (a2 + b)

∫

Vi(P)∩ ∂B(pi,a)
nout(q)φ(q)dq,

where nout is the outward normal vector to B(pi, a). For the particular
case when b = −a2, the performance function is continuous, and the
gradient of Hdist-area,a takes the simpler form

∂Hdist-area,a

∂pi
(P ) = 2 Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi),

which points in the direction of the vector from pi to the centroid of
its a-limited Voronoi cell. In this case, the critical points of Hdist-area,a

are therefore the set of a-limited centroidal Voronoi configurations in
S (cf., Section 2.1.4). This is a natural generalization of the result
for the 1-center case, where the optimal node location is the centroid
CMφ(S ∩B(p, a)).

We refer to Hdist, Harea,a, and Hdist-area,a as multicenter functions because,
as the above discussion shows, their critical points correspond to various
notions of center Voronoi configurations.
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Note that the gradients of Harea,a and Hdist-area,a,b are spatially distributed
over the 2a-limited Delaunay graph GLD(2a). This observation is important
for practical considerations: robotic agents with range-limited interactions
cannot in general compute the gradient of Hdist because, as we noted in
Remark 2.10, for a given r ∈ R>0, GD is not in general spatially distributed
over Gdisk(r). However, robotic agents with range-limited interactions can
compute the gradients of Harea,a and Hdist-area,a,b as long as r ≥ 2a because,
from Theorem 2.7(iii), GLD(r) is spatially distributed over Gdisk(r). The
relevance of this fact is further justified by the following result.

Proposition 2.17 (Constant-factor approximation of Hdist). Let S ⊂
Rd be bounded and measurable. Consider the mixed distortion-area problem
with a ∈ ]0,diamS] and b = −diam(S)2. Then, for all P ∈ Sn,

Hdist-area,a,b(P ) ≤ Hdist(P ) ≤ β2 Hdist-area,a,b(P ) < 0, (2.3.7)

where β = a
diam(S) ∈ [0, 1].

In fact, similar constant-factor approximations of the expected-value mul-
ticenter function Hexp can also be established (see Cortés et al., 2005).

2.3.2 Worst-case and disk-covering multicenter functions

Given a compact set S ⊂ Rd and a performance function f , let us consider
the point in S that is worst covered by a set of points p1, . . . , pn. Formally,
we define the worst-case multicenter function Hworst : Sn → R by

Hworst(p1, . . . , pn) = min
q∈S

max
i∈{1,...,n}

f(‖q − pi‖2). (2.3.8)

The definition of Hworst can be read as follows: for each location q ∈ S,
consider the best coverage of q among those provided by each of the nodes
p1, . . . , pn, which corresponds to the value maxi∈{1,...,n} f(‖q − pi‖2). Then,
compute the worst coverage Hworst(p1, . . . , pn) by comparing the perfor-
mance at all locations in S.

Given the interpretation of Hworst, we seek to solve the following geometric
optimization problem:

maximize Hworst(p1, . . . , pn), (2.3.9)

that is, we seek to determine configurations p1, . . . , pn that maximize the
value of Hworst. An equivalent formulation of this problem is referred to
as a continuous p-center problem in the literature on facility location (see,
e.g., Drezner, 1995).
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In the present context, also relevant is the disk-covering multicenter func-
tion Hdc : Sn → R, defined by

Hdc(p1, . . . , pn) = max
q∈S

min
i∈{1,...,n}

‖q − pi‖2. (2.3.10)

The value of Hdc can be interpreted as the largest possible distance from
a point in S to one of the locations p1, . . . , pn. Note that, by definition,
the environment S is contained in the union of n closed balls centered at
p1, . . . , pn with radius Hdc(p1, . . . , pn). The definition of Hdc is illustrated
in Figure 2.14(a).

The following result establishes the relationship between the worst-case
and the disk-covering multicenter functions, and as byproduct, provides an
elegant reformulation of the geometric optimization problem (2.3.9). Its
proof is left to the reader.

Lemma 2.18 (Relationship between Hworst and Hdc). Given S ⊂ Rd

compact and a performance function f : R≥0 → R, one has Hworst = f ◦Hdc.

Using Lemma 2.18 and the fact that f is non-increasing, we can reformu-
late the geometric optimization problem (2.3.9) as

minimize Hdc(p1, . . . , pn), (2.3.11)

that is, find the minimum radius r such that the environment S is covered by
n closed balls centered at p1, . . . , pn with equal radius r. Note the connection
between this formulation and the classical disk-covering problem: how to
cover a region with (possibly overlapping) disks of minimum radius. We
shall comment more on this connection later.

Because of the equivalence between the geometric optimization prob-
lems (2.3.9) and (2.3.11), we focus our attention on Hdc. The disk-covering
multicenter function can be alternatively described in terms of the Voronoi
partition of S generated by P = {p1, . . . , pn}. For (p1, . . . , pn) ∈ Sn \ Scoinc,

Hdc(p1, . . . , pn) = max
i∈{1,...,n}

max
q∈Vi(P)

‖q − pi‖2

= max
i∈{1,...,n}

max
q∈∂Vi(P)

‖q − pi‖2. (2.3.12)

This characterization of Hdc is illustrated in Figure 2.14(b). The expres-
sion (2.3.12) is appealing because it clearly shows the value of Hdc as the
result of the aggregate contribution of all individual nodes. If (p1, . . . , pn) ∈
Scoinc, then a similar decomposition of Hdc can be written in terms of the
distinct points P = iF(p1, . . . , pn). A node i ∈ {1, . . . , n} is called active at
(p1, . . . , pn) if maxq∈∂Vi(P) ‖q− pi‖2 = Hdc(p1, . . . , pn). A node is passive at
(p1, . . . , pn) if it is not active.
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(a) (b)

Figure 2.14 An illustration of the definition of Hdc: (a) and (b) show the same config-
uration, with and without the Voronoi configuration, respectively. For each
node, the disk is the minimum-radius disk centered at the node and enclosing
the Voronoi cell. The value of Hdc is the radius of the disk centered at the
leftmost node.

Inspired by expression (2.3.12), let us define a more general version of the
disk-covering multicenter function. Given (p1, . . . , pn) ∈ Sn and a partition
{W1, . . . ,Wn} ⊂ P(S) of S, let

Hdc(p1, . . . , pn,W1, . . . ,Wn) = max
i∈{1,...,n}

max
q∈∂Wi

‖q − pi‖2.

Note the relationship Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)),
for all (p1, . . . , pn) ∈ Sn \ Scoinc. Moreover, one can establish the following
optimality result, whose proof is given in Section 2.5.4.

Proposition 2.19 (Hdc-optimality of the Voronoi partition and cir-
cumcenter locations). For any P = {p1, . . . , pn} ∈ F(S) and any parti-
tion {W1, . . . ,Wn} ⊂ P(S) of S,

Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hdc among all partitions
of S, and

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the circumcenter locations CC(W1), . . . ,CC(Wn) are optimal for Hdc

among all configurations in S.

As a corollary of this result, we have that the circumcenter of S is a global
optimum of Hdc for the 1-center problem, that is, when n = 1. This comes
as no surprise since, in this case, the value Hdc(p) corresponds to the radius
of the minimum-radius sphere centered at p that encloses S.
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The following result characterizes the smoothness properties of the disk-
covering multicenter function; for more details and for the proof, see Cortés
and Bullo (2005).

Theorem 2.20 (Smoothness properties of Hdc). Given S ⊂ Rd com-
pact, the disk-covering multicenter function Hdc : Sn → R is globally Lips-
chitz on Sn.

The generalized gradient and the critical points of Hdc can be charac-
terized, but require a careful study based on nonsmooth analysis (Clarke,
1983). In particular, two facts taken from Cortés and Bullo (2005) are of in-
terest here. First, under certain technical conditions, one can show that the
critical points of Hdc are circumcenter Voronoi configurations. This is why
we refer to Hdc as a multicenter function. Second, the generalized gradient
of Hdc is not spatially distributed over GD. This is essentially due to the
inherent comparison among all agents that is embedded in the definition of
Hdc (via the max function).

2.3.3 Sphere-packing multicenter functions

Given a compact connected set S ⊂ Rd, imagine trying to fit inside S “max-
imally large” non-intersecting balls. Assuming that the balls are centered
at a set of points p1, . . . , pn, we aim to maximize their smallest radius. We
define the sphere-packing multicenter function Hsp : Sn → R by

Hsp(p1, . . . , pn) = min
i6=j∈{1,...,n}

{1

2
‖pi − pj‖2,dist(pi, ∂S)

}

. (2.3.13)

The definition of Hsp can be read as follows: consider the pairwise distances
between any two points pi, pj (multiplied by a factor 1/2 so that each point
can fit a ball of equal radius and these balls do not intersect), and the indi-
vidual distances from each point to the boundary of the environment. The
value of Hsp is then the smallest of all distances, guaranteeing that the union
of n open balls centered at p1, . . . , pn with radius Hsp(p1, . . . , pn) is disjoint
and contained in S. The definition of Hsp is illustrated in Figure 2.15(a).

Given the definition of Hsp, we seek to solve the following geometric op-
timization problem:

maximize Hsp(p1, . . . , pn), (2.3.14)

that is, we seek to determine configurations p1, . . . , pn that maximize the
value of Hsp. Note the connection of this formulation with the classical
sphere-packing problem: how to maximize the number of fixed-radius non-
overlapping spheres inside a region.
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(a) (b)

Figure 2.15 An illustration of the definition of Hsp: (a) and (b) show the same config-
uration, with and without the Voronoi configuration, respectively. For each
node, the disk is the maximum-radius disk centered at the node and contained
in the Voronoi cell. The value of Hsp is the radius of the two equal-radius
smallest disks.

The sphere-packing multicenter function can be alternatively described
in terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. For
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hsp(p1, . . . , pn) = min
i∈{1,...,n}

min
q∈∂Vi(P)

‖q − pi‖2. (2.3.15)

This description is illustrated in Figure 2.15(b). As for the previous multi-
center functions, expression (2.3.15) is appealing because it clearly shows the
value of of Hsp as the result of the aggregate contribution of all individual
nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar decomposition of Hsp exists
in terms of the distinct points P = iF(p1, . . . , pn). A node i ∈ {1, . . . , n}
is called active at (p1, . . . , pn) if minq∈∂Vi(P) ‖q − pi‖2 = Hsp(p1, . . . , pn). A
node is passive at (p1, . . . , pn) if it is not active.

Inspired by expression (2.3.15), let us define a more general version of
the sphere-packing multicenter function. Given (p1, . . . , pn) ∈ Sn and a
partition {W1, . . . ,Wn} ⊂ P(S) of S, let

Hsp(p1, . . . , pn,W1, . . . ,Wn) = min
i∈{1,...,n}

min
q∈∂Wi

‖q − pi‖2.

Note the relationship Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)),
for all (p1, . . . , pn) ∈ Sn \ Scoinc. Additionally, note that the quantity
Hsp(q1, . . . , qn,W1, . . . ,Wn) is the same for any qi ∈ IC(Wi), i ∈ {1, . . . , n}.
With a slight abuse of notation, we refer to this common value using the
symbol Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn). Moreover, one can establish
the following optimality result (for the proof, see Section 2.5.5).
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Proposition 2.21 (Hsp-optimality of the Voronoi partition and in-
center locations). For any P = {p1, . . . , pn} ∈ F(S) and any partition
{W1, . . . ,Wn} ⊂ P(S) of S,

Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hsp among all partitions
of S, and

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

that is, the incenters IC(W1), . . . , IC(Wn) are optimal for Hsp among all
configurations in S.

As a corollary of this result, we have that the incenter set of S is composed
of global optima of Hsp for the 1-center problem, that is, when n = 1.
This comes as no surprise since, in this case, the value Hsp(p) corresponds
to the radius of the maximum-radius sphere centered at p enclosed in S.
The following result characterizes the smoothness properties of the sphere-
packing multicenter function (see Cortés and Bullo, 2005).

Theorem 2.22 (Smoothness properties of Hsp). Given S ⊂ Rd com-
pact, the sphere-packing multicenter function Hsp : Sn → R is globally Lip-
schitz on Sn.

We conclude this section with some remarks that are analogous to those
for the function Hdc. The generalized gradient and the critical points of
Hsp can be characterized, but require a careful study based on nonsmooth
analysis (Clarke, 1983). In particular, two facts taken from Cortés and Bullo
(2005) are of interest here. First, under certain technical conditions, one can
show that the critical points of Hsp are incenter Voronoi configurations. This
is why we refer to Hsp as a multicenter function. Second, the generalized
gradient of Hsp is not spatially distributed over GD. This is essentially due to
the inherent comparison among all agents that is embedded in the definition
of Hsp (via the min function).

2.4 NOTES

A thorough introduction to computational geometric concepts can be found
in Preparata and Shamos (1993), de Berg et al. (2000), and O’Rourke (2000).
The handbooks Goodman and O’Rourke (2004) and Sack and Urrutia (2000)
present a comprehensive overview of computational geometric problems and
their applications. Among the numerous topics that we do not discuss in
this chapter, we mention distance geometry and rigidity theory (Whiteley,
1997), which are notable for their applications to network localization and
formation control.
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The notion of Voronoi partition, and generalizations of it, have been ap-
plied in numerous areas, including spatial interpolation, pattern analysis,
spatial processes modeling, and optimization, to name a few. The sur-
vey Aurenhammer (1991) and the book by Okabe et al. (2000) discuss the
history, properties, and applications of Voronoi partitions. The nearest-
neighbor and natural-neighbor interpolations based on Voronoi partitions
(see, for example Sibson, 1981; Boissonnat and Cazals, 2002) are of par-
ticular interest to the treatment of this chapter because of their spatially
distributed computation character. Spatially distributed maps for motion
coordination are discussed in Mart́ınez et al. (2007c) and adopted in later
chapters.

Proximity graphs (Jaromczyk and Toussaint, 1992) are a powerful tool
to capture the structure and shape of geometric objects, and therefore have
applications in multiple areas, including topology control of wireless net-
works (Santi, 2005), computer graphics (Langetepe and Zachmann, 2006),
and geographic analysis (Radke, 1988). The connectivity properties of cer-
tain proximity graphs (including those stated in Theorem 2.8) are taken
from Cortés et al. (2005, 2006). In cooperative control, a closely related
notion is that of state-dependent graph (Mesbahi, 2005). Random geomet-
ric graphs (Penrose, 2003) and percolation theory (Bollobás and Riordan,
2006; Meester and Roy, 2008) study the properties of proximity graphs as-
sociated to the random deployment of points according to some specified
density function.

Locational optimization problems (Drezner, 1995; Drezner and Hamacher,
2001) are spatial resource-allocation problems (e.g., where to place mail-
boxes in a city, or where to place cache serves on the internet) that pervade
a broad spectrum of scientific disciplines. Computational geometry plays
an important role in locational optimization (Robert and Toussaint, 1990;
Okabe et al., 2000). The field of geometric optimization (Mitchell, 1997;
Agarwal and Sharir, 1998; Boltyanski et al., 1999) blends the geometric and
locational optimization aspects to study a wide variety of optimization prob-
lems induced by geometric objects. The smoothness properties of the cost
function Hexp are taken from Cortés et al. (2005).

2.5 PROOFS

This section gathers the proofs of the main results presented in the chapter.
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2.5.1 Proofs of Theorem 2.7 and Theorem 2.8

Proof of Theorem 2.7. The inclusions in fact (i) are taken from Jaromczyk
and Toussaint (1992), and de Berg et al. (2000). The proof of the first
inclusion in fact (ii) is as follows. Let (pi, pj) ∈ EGG ∩Gdisk(r)(P). From the

definition of the Gabriel graph, we deduce that ‖pi+pj

2 − pi‖2 = ‖pi+pj

2 −
pj‖2 ≤ ‖pi+pj

2 − pk‖2, for all k ∈ {1, . . . , n} \ {i, j}, and therefore, pi+pj

2 ∈
Vi(P)∩Vj(P). Since (pi, pj) ∈ EGdisk(r)(P), we deduce that pi+pj

2 ∈ B(pi,
r
2)∩

B(pj ,
r
2), and hence (pi, pj) ∈ EGLD(r)(P). The second inclusion in (ii) is

straightforward: if (pi, pj) ∈ EGLD(r)(P), then Vi(P) ∩ Vj(P) 6= ∅, that is,
(pi, pj) ∈ EGD

(P). Since clearly (pi, pj) ∈ EGdisk(r)(P), we conclude (ii). �

Proof of Theorem 2.8. The proof of fact (i) is as follows. Let P ∈ F(Rd).
If GEMST(P) ⊆ Gdisk(r)(P), then clearly Gdisk(r)(P) is connected. To prove
the other implication, we reason by contradiction. Assume Gdisk(r)(P) is
connected and let GEMST(P) 6⊆ Gdisk(r)(P), that is, there exist pi and pj

with (pi, pj) ∈ EGEMST
(P) and ‖pi − pj‖2 > r. If we remove this edge

from EGEMST
(P), then the tree becomes disconnected into two connected

components T1 and T2, with pi ∈ T1 and pj ∈ T2. Now, since by hypoth-
esis Gdisk(r)(P) is connected, there must exist k, l ∈ {1, . . . , n} such that
pk ∈ T1, pl ∈ T2 and ‖pk − pl‖2 ≤ r. If we add the edge (pk, pl) to the
set of edges of T1 ∪ T2, then the resulting graph G is acyclic, connected,
and contains all the vertices P, that is, G is a spanning tree. Moreover,
since ‖pk − pl‖2 ≤ r < ‖pi − pj‖2 and T1 and T2 are induced subgraphs of
GEMST(P), we conclude that G has smaller length than GEMST(P), which
is a contradiction with the definition of the Euclidean minimum spanning
tree.

Next, we prove fact (ii). For r ∈ R+, it suffices for us to show that
GEMST ∩Gdisk(r) has the same connected components as Gdisk(r), since this
implies that the same result holds for GRN ∩Gdisk(r), GG ∩Gdisk(r), and
GLD(r). Since GEMST ∩Gdisk(r) is a subgraph of Gdisk(r), it is clear that ver-
tices belonging to the same connected component of GEMST ∩Gdisk(r) must
also belong to the same connected component of Gdisk(r). To prove the con-
verse, let P ∈ F(Rd), and assume that pi and pj in P verify ‖pi − pj‖2 ≤ r.
Let C be the connected component of Gdisk(r)(P) to which they belong.
With a slight abuse of notation, we also denote by C the vertices of the con-
nected component. Since C is connected, then GEMST(C) ⊂ C by fact (i).
Moreover, since all the nodes in P \ C are at a distance strictly larger than
r from any node of C, we deduce from the definition of the Euclidean min-
imum spanning tree that GEMST(C) is equal to the subgraph of GEMST(P)
induced by C. Therefore, GEMST(C) ⊂ GEMST ∩Gdisk(r)(P), and pi and
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pj belong to the same component of GEMST ∩Gdisk(r)(P). This implies the
result. �

2.5.2 Proof of Proposition 2.9

Proof. Regarding the statement on GRN ∩Gdisk(r), note that

B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) ⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in the intersection
B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) must necessarily be within a distance
r of pi. From here, we deduce that GRN ∩Gdisk(r) is spatially distributed
over Gdisk(r). Regarding the statement on GG ∩Gdisk(r), note that

B
(pi + pj

2
,
‖pi − pj‖2

2

)

⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in B
(pi+pj

2 , ‖pi−pj‖2

2

)

must necessarily be within a distance r of pi. From here, we deduce that
GG ∩Gdisk(r) is spatially distributed over Gdisk(r). Finally, note that if ‖pi−
pj‖2 > r, then the half-plane {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2} contains the
ball B(pi,

r
2). Accordingly,

Vi, r

2
(P) = Vi(P) ∩B(pi,

r
2)

= {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ P} ∩B(pi,
r
2)

= {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ NGdisk(r),pi
(P)} ∩B(pi,

r
2),

from which we deduce that GLD(r) is spatially distributed over Gdisk(r). �

2.5.3 Proof of Theorem 2.16

We begin with some preliminary notions. In the following, a set Ω ⊂ R2

is piecewise continuously differentiable if its boundary, ∂Ω, is a not self-
intersecting closed curve that admits a continuous and piecewise continu-
ously differentiable parameterization γ : [0, 1] → R2. Likewise, a collection
of sets {Ω(x) ⊂ R2 | x ∈ (a, b)} is a piecewise continuously differentiable
family if Ω(x) is piecewise continuously differentiable for all x ∈ (a, b), and
there exists a continuous function γ : [0, 1] × (a, b) → R2, (t, x) 7→ γ(t, x),
continuously differentiable with respect to its second argument, such that
for each x ∈ (a, b), the map t 7→ γx(t) = γ(t, x) is a continuous and piecewise
continuously differentiable parameterization of ∂Ω(x). We refer to γ as a
parameterization for the family {Ω(x) ⊂ R2 | x ∈ (a, b)}.
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The following result is an extension of the Law of Conservation of Mass
in fluid mechanics (Chorin and Marsden, 1994) and of the classic divergence
theorem in differential geometry (Chavel, 1984).

Proposition 2.23 (Generalized conservation of mass). Let {Ω(x) ⊂
R2 | x ∈ (a, b)} be a family of star-shaped sets with piecewise continuously
differentiable boundary. Let the function φ : R2 × (a, b) → R be continuous
on R2 × (a, b) that is continuously differentiable with respect to its second
argument for all x ∈ (a, b) and almost all q ∈ Ω(x), and such that for each

x ∈ (a, b), the maps q 7→ φ(q, x) and q 7→ ∂φ
∂x (q, x) are measurable, and

integrable on Ω(x). Then, the function

(a, b) ∋ x 7→
∫

Ω(x)
φ(q, x)dq (2.5.1)

is continuously differentiable and

d

dx

∫

Ω(x)
φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq +

∫

∂Ω(x)
φ(γ, x)

(

n(γ) · ∂γ
∂x

)

dγ ,

where n : ∂Ω(x) → R2, q 7→ n(q), denotes the unit outward normal to ∂Ω(x)
at q ∈ ∂Ω(x), and γ : [0, 1]×(a, b) → R2 is a parameterization for the family
{Ω(x) ⊂ R2 | x ∈ (a, b)}.

We interpret the proposition as follows: in the fluid mechanics interpreta-
tion, as the parameter x changes, the total mass variation inside the region
can be decomposed into two terms. The first term is the amount of mass
created inside the region, whereas the second term is the amount of mass
that crosses the moving boundary of the region.

Proof of Proposition 2.23. Let x0 ∈ (a, b). Using the fact that the map
γ is continuous and that Ω(x0) is star-shaped, one can show that there
exist an interval around x0 of the form (x0 − ε, x0 + ε), a continuously
differentiable function ux0

: [0, 1] × R≥0 → R2 and a function rx0
: [0, 1] ×

(x0 − ε, x0 + ε) → R≥0 continuously differentiable in its second argument
and piecewise continuously differentiable in its first argument, such that for
all x ∈ (x0 − ε, x0 + ε), one has

Ω(x) = ∪t∈[0,1]{ux0
(t, s) | 0 ≤ s ≤ rx0

(t, x)},
γ(t, x) = ux0

(t, rx0
(t, x)), for all t ∈ [0, 1].

For simplicity, we denote by r and u the functions rx0
and ux0

, respectively.
By definition, the function in (2.5.1) is continuously differentiable at x0 if
the following limit exists:

lim
h→0

1

h

(

∫

Ω(x0+h)
φ(q, x0 + h)dq −

∫

Ω(x0)
φ(q, x0)dq

)

,
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and depends continuously on x0. Now, we can rewrite the previous limit as

lim
h→0

1

h

∫ 1

0

(

∫ r(t,x0+h)

0
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
ds

−
∫ r(t,x0)

0
φ(u(t, s), x0)

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
ds

)

dt

= lim
h→0

1

h

∫ 1

0

(

∫ r(t,x0+h)

r(t,x0)
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
ds

+

∫ r(t,x0)

0
(φ(u(t, s), x0 + h) − φ(u(t, s), x0))

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
ds

)

dt, (2.5.2)

where × denotes the vector product and for brevity we omit the fact that
the partial derivatives ∂u

∂t and ∂u
∂s are evaluated at (t, s) in the integrals.

Regarding the second integral in the last equality of (2.5.2), since

lim
h→0

1

h

(

(φ(u(t, s), x0 + h) − φ(u(t, s), x0))
∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2

)

=
∂φ

∂x0
(u(t, s), x0)

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
,

almost everywhere, and this function is measurable and its integral over
the bounded set Ω(x0) is finite by hypothesis, the Lebesgue Dominated
Convergence Theorem (Bartle, 1995) implies that

lim
h→0

1

h

∫ 1

0

∫ r(t,x0)

0
(φ(u(t, s), x0 + h) − φ(u(t, s), x0))

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
dsdt

=

∫ 1

0

∫ r(t,x0)

0

∂φ

∂x
(u(t, s), x0)

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
dsdt

=

∫

Ω(x0)

∂φ

∂x
(q, x0)dq. (2.5.3)

On the other hand, regarding the first integral in the last equality of (2.5.2),
using the continuity of φ, one can deduce that

lim
h→0

1

h

∫ 1

0

∫ r(t,x0+h)

r(t,x0)
φ(u(t, s), x0 + h)

∥

∥

∥

∂u

∂t
(t, s)× ∂u

∂s
(t, s)

∥

∥

∥

2
ds dt

= lim
h→0

1

h

∫ 1

0

∫ x0+h

x0

φ(u(t, r(t, z)), x0 + h)

·
∥

∥

∥

∂u

∂t
(t, r(t, z))× ∂u

∂s
(t, r(t, z))

∥

∥

∥

2

∂r

∂x
(t, z) dz dt

=

∫ 1

0
φ(u(t, r(t, x0)), x0)

∥

∥

∥

∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥

∥

∥

2

∂r

∂x0
(t, x0) dt.
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Since γ(t, x) = u(t, r(t, x)) for all t ∈ [0, 1] and x ∈ (x0 − ε, x0 + ε), one has

∂γ

∂t
(t, x0) =

∂u

∂t
(t, r(t, x0)) +

∂u

∂s
(t, r(t, x0))

∂r

∂t
(t, x0) ,

∂γ

∂x
(t, x0) =

∂u

∂s
(t, r(t, x0))

∂r

∂x
(t, x0).

Let χ denote the angle formed by ∂γ
∂t (t, x0) and ∂u

∂s (t, r(t, x0)). Then (omit-
ting the expression (t, r(t, x)) for brevity),

∥

∥

∥

∂u

∂t
× ∂u

∂s

∥

∥

∥

2
=

∥

∥

∥

(

∂u

∂t
+
∂u

∂s

∂r

∂t

)

× ∂u

∂s

∥

∥

∥

2

=
∥

∥

∥

dγ

dt

∥

∥

∥

2

∥

∥

∥

∂u

∂s

∥

∥

∥

2
sinχ =

∥

∥

∥

∂γ

∂t

∥

∥

∥

2
nT (γ)

∂u

∂s
,

where in the last inequality we have used the fact that, since γx0
is a param-

eterization of ∂Ω(x0), then sinχ = cosψ, where ψ is the angle formed by n,
the outward normal to ∂Ω(x0), and ∂u

∂s . Therefore, we finally arrive at
∫ 1

0
φ(γ(t), x0)

∥

∥

∥

∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥

∥

∥

2

∂r

∂x
(t, x0)dt

=

∫ 1

0
φ(γ(t), x0)

∥

∥

∥

∂γ

∂t
(t, x0)

∥

∥

∥

2
nT (γ(t, x0))

∂γ

∂x
(t, x0)dt

=

∫

∂Ω(x0)
φ(γ, x0)n

T (γ)
∂γ

∂x
dγ. (2.5.4)

Given the hypothesis of Proposition 2.23, both terms in (2.5.3) and (2.5.4)
have a continuous dependence on x0 ∈ (a, b). This concludes the proof. �

We are finally ready to state the proof of the main result of Section 2.3.

Proof of Theorem 2.16. We prove the theorem statement when the perfor-
mance function is continuously differentiable and we refer to Cortés et al.
(2005) for the complete proof for the case when the performance function
is piecewise continuously differentiable. Specifically, we show that if f is
continuously differentiable, then for P ∈ Sn \ Scoinc,

∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq.
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From Proposition 2.23, we have

∂

∂pi

(

n
∑

j=1

∫

Vj(P)
f(‖q − pj‖2)φ(q)dq

)

=

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+

n
∑

j=1

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj ,

where γj is a parametrization of Vj(P) and where we abbreviate ϕ(pj , q) =
f(‖q − pj‖2)φ(q). Next, we show that the second term vanishes. Note that
the motion of pi affects the Voronoi cell Vi(P) and the cells of all its neighbors
in NGD,pi

(P). Therefore, the second term equals
∫

∂Vi(P)
ϕ(pi, q)

(

n(γi) ·
∂γi

∂pi

)

dγi

+
∑

pj∈NGD,pi
(P)

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj .

Without loss of generality, assume that Vi(P) does not share any face with
∂S. Since the boundary of Vi(P) satisfies ∂Vi(P) =

⋃

j ∆ij , where ∆ij = ∆ji

is the edge between Vi(P) and Vj(P), for all neighbors pj , we compute
∫

∂Vi(P)
ϕ(pi, q)

(

n(γi) ·
∂γi

∂pi

)

dγi =
∑

pj∈NGD,pi
(P)

∫

∆ij

ϕ(pi, q)
(

nij(γj) ·
∂γj

∂pi

)

dγj ,

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj =

∫

∆ji

ϕ(pj , q)
(

nji(γj) ·
∂γj

∂pi

)

dγj ,

where nij denotes the unit normal along ∆ij outward of Vi(P ). Noting that
nji = −nij and collecting the results obtained so far, we write

n
∑

j=1

∫

∂Vj(P)
ϕ(pj , q)

(

n(γj) ·
∂γj

∂pi

)

dγj

=
∑

pj∈NGD,pi
(P)

∫

∆ij

(

ϕ(pi, q) − ϕ(pj , q)
)(

nij(γj) ·
∂γj

∂pi

)

dγj .

This quantity vanishes because f(‖q − pi‖2) = f(‖q − pj‖2), and therefore
ϕ(pi, q) = ϕ(pj , q) for any q belonging to the edge ∆ij . �

2.5.4 Proof of Proposition 2.19

Proof. Recall that Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ ∈ Vj(P) be such that
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Hdc(p1, . . . , pn) = ‖q∗ − pj‖2. By definition, given a partition {W1, . . . ,Wn}
of S, there exists k such that q∗ ∈Wk. Therefore,

Hdc(p1, . . . , pn) = ‖q∗ − pj‖2 ≤ ‖q∗ − pk‖2

≤ max
q∈Wk

‖q − pj‖2 ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, note that the definition of circumcenter im-
plies that, for each i ∈ {1, . . . , n},

max
q∈∂Wi

‖q − CC(Wi)‖2 ≤ max
q∈∂Wi

‖q − pi‖2.

Taking the maximum over all nodes, we deduce that

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �

2.5.5 Proof of Proposition 2.21

Proof. Recall that Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ 6∈ int(Vj(P)) be such
that Hsp(p1, . . . , pn) = ‖q∗ − pj‖2. Since q∗ 6∈ int(Vj(P)), there exists i ∈
{1, . . . , n} such that ‖q∗− pj‖2 ≥ ‖q∗− pi‖2. On the other hand, there must
exist k ∈ {1, . . . , n} such that q∗ ∈ Wk. Now, if k = j, then q∗ 6∈ int(Wi).
Therefore,

Hsp(p1, . . . , pn) = ‖q∗ − pj‖2 ≥ ‖q∗ − pi‖2

≥ min
q 6∈int(Wi)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Now, if k = i, then q∗ 6∈ int(Wj). Therefore,

Hsp(P ) = ‖q∗ − pj‖2 ≥ min
q 6∈int(Wj)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Finally, if k 6= i, j, then q∗ 6∈ int(Wi) ∪ int(Wj), and a similar argument
guarantees Hsp(p1, . . . , pn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, let i ∈ {1, . . . , n} and select qi ∈ IC(Wi).
The definition of the incenter set implies that,

min
q∈∂Wi

‖q − qi‖2 ≥ min
q∈∂Wi

‖q − pi‖2.

The expression on the left does not depend on the specific point selected in
the incenter set. Taking the minimum over all nodes, we deduce that

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �
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2.6 EXERCISES

E2.1 (Proof of Lemma 2.2). For S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2, prove the
following statements:

(i) CC(S) ∈ co(S) \ Ve(co(S));

(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r), then the
segment ]p, CC(S)[ has a nonempty intersection with B( p+q

2
, r

2
) for all

q ∈ co(S).
Hint: To show (i), invoke the definition of circumcenter. To show (ii), distinguish
between the case when ‖p−q‖2 < r and ‖p−q‖2 = r. A proof is contained in Cortés
et al. (2006).

E2.2 (The centroid of a convex set is an interior point). Let S be a bounded
measurable convex set in Rd and let φ : S → R>0 be a bounded measurable
density function that is positive over S. Show that

CMφ(S) ∈ int(S).

E2.3 (The inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict). Consider the
nodes p1 = (0, 0), p2 = (1, 0), and p3 = (2, 1

10
). Pick r = 3 and perform the

following tasks:

(i) draw the three points, their Voronoi polygons and the disks centered at
the points with radius r; and

(ii) show that p1 and p3 are neighbors in the graph GD ∩Gdisk(r), but not in
the graph GLD(r).

E2.4 (The proximity graph GD ∩ Gdisk(r) is not spatially distributed over
Gdisk(r)). Consider the nodes p1 = (0, 0), p2 = (1, 0), p3 = (2, 1

10
), and p4 =

(0, 31
10

). Compute the Voronoi partitions of the plane generated by {p1, p2.p3}
and {p1, p2, p3, p4}. For r = 3, show that p1 and p3 are neighbors in the graph
GD ∩Gdisk(r)({p1, p2, p3}) but not in the graph GD ∩Gdisk(r)({p1, p2, p3, p4}). Why
does this exercise illustrate that GD ∩ Gdisk(r) is not spatially distributed over
Gdisk(r)?

E2.5 (1-center area problem). Let W ⊂ R2 be a convex polygon, let φ be a density
function on R2, and let a ∈ R>0. Assume that the a-contraction of W is non-
empty. Consider the area function H1 : W → R, defined by

H1(p) =

Z

W∩B(p,a)

φ(q)dq = Aφ(W ∩ B(p, a)).

Justify informally why, at points in the boundary of a convex polygon W , the gra-
dient of H1 is non-vanishing, and points toward the interior of the polygon. (Note
that it is not known whether the function H1 is concave and how to characterize
critical points of H1 in geometric terms.)

E2.6 (Concavity of performance function and 1-center function). Given a
performance function f , define the 1-center function Hexp,1 : S → R by

Hexp,1(p) =

Z

S

f(‖q − p‖2)φ(q)dq.

Prove the following facts:
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(i) if f is concave, then Hexp,1 is concave; and

(ii) if f is concave and decreasing and S has positive measure, then Hexp,1

is strictly concave.

E2.7 (Fermat–Weber center). Let S ⊂ R2 be a convex polygon and let φ be a
density function on S. Define the Fermat–Weber function HFW : R2 → R by

HFW(p) =

Z

S

‖p − q‖2φ(q)dq.

(i) Prove that HFW is strictly convex.

(ii) Show that HFW has a unique global minimum point inside S.

(iii) Compute the derivative of HFW and propose an algorithm to compute
the global minimum point.

(iv) Is the function strictly convex even if the polygon S is not convex?
The unique minimum of HFW is called the Fermat–Weber point or, alternatively,
the median point of the region S. Further details on this problem are available
in Fekete et al. (2005) and references therein.

E2.8 (Proof of Proposition 2.14). In this exercise, you are asked to prove a state-
ment that is slightly more general than Proposition 2.14. Let {W1, . . . , Wn} ⊂
P(S) be a partition of S ⊂ Rd and let φ be a density function on Rd. Select
{p1, . . . , pn}, {p1, . . . , pn} ∈ F(S) with the property that, for all i ∈ {1, . . . , n},

‖pi − CMφ(Wi)‖2 ≤ ‖pi − CMφ(Wi)‖2.

Show that

Hdist(p1, . . . , pn, W1, . . . , Wn) ≥ Hdist(p1, . . . , pn, W1, . . . , Wn),

and that the inequality is strict if there exists i ∈ {1, . . . , n} such that ‖pi −
CMφ(Wi)‖2 < ‖pi − CMφ(Wi)‖2 and such that Wi has positive area.
Hint: Use the expression of Hdist in (2.3.5).

E2.9 (Mixed distortion-area multicenter function). Show that the expected mul-
ticenter function Hexp takes the form of Hdist-area,a,b stated in Section 2.3.1 when
the performance function is

f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x),

with a ∈ R>0 and b ≤ −a2.
Hint: As an intermediate step, show that for P = (p1, . . . , pn) ∈ Sn, one has
Vi(P ) ∩ (S \ B(pi, a)) = Vi(P ) ∩

`
S \ ∪n

k=1B(pk, a)
´

for all i ∈ {1, . . . , n}.
E2.10 (Proof of Proposition 2.15). This exercise is a guided proof of Proposition 2.15.

Let W ⊂ Rd be a connected set, let φ be a density function on Rd, and let a ∈ R>0.
For p ∈ W and B a closed ball centered at a point in W with radius a, define
(p, B) 7→ HW (p, B) by

HW (p, B) = −
Z

W∩B

‖q − p‖2
2φ(q)dq −

Z

W∩(S\B)

a2φ(q)dq.

Do the following:
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(i) Show that the multicenter function Hdist-area,a admits the expression

Hdist-area,a(p1, . . . , pn, W1, . . . , Wn) =
nX

i=1

HWi(pi, B(pi, a)).

(ii) Given a closed ball B centered at a point in W with radius a, show that
for any p ∈ W ,

HW (CMφ(W ∩ B), B) ≥ HW (p, B),

with strict inequality unless p = CMφ(W ∩ B).
Hint: Use the Parallel Axis Theorem (Hibbeler, 2006).

(iii) Given p ∈ W , show that for any closed ball B centered at a point in W
with radius a,

HW (p, B(p, a)) ≥ HW (p, B).

Hint: Consider the decomposition of W given by the union of the disjoint
sets B(p, a)∩B, B(p, a)∩ (W \B), (W \B(p, a))∩B and (W \B(p, a))∩
(W \ B), and compare the integrals over each set.

(iv) Deduce, using (ii) and (iii), that

HW (CMφ(W ∩ B(p, a)), B(CMφ(W ∩ B(p, a)), a)) ≥ HW (p, B(p, a)),

with strict inequality unless p = CMφ(W ∩ B).

(v) Combine (i) and (iv) to prove Proposition 2.15.

E2.11 (Locally cliqueless proximity graph). Give an example of an allowable envi-
ronment Q and a configuration of points such that the following inclusions (taken
from Theorem 2.11(i)) are strict for G = Gvis,Q:

GEMST,G ⊆ Glc,G ⊆ G,

E2.12 (Properties of the locally cliqueless graph). Prove Theorem 2.11.
Hint: This exercise has notable theoretical content. To prove Theorem 2.11(i),
use an argument by contradiction to show that the first inclusion holds, and use
the definition of locally cliqueless graph to show that the second inclusion holds.

E2.13 (When are the total derivative and the partial derivative of a function
equal?). Assume that f : R×R → R is continuously differentiable in its both of its
arguments and let ∂1f be its partial derivative with respect to its first argument.
Assume that the function y∗ : R → R satisfies, for each x ∈ R,

f(x, y∗(x)) = max{f(x, z) | z ∈ R},

and is continuously differentiable. Perform the following tasks:

(i) Show that
d

dx
f(x, y∗(x)) = ∂1f(x, y∗(x)). (E2.1)

(ii) Explain how this result gives an insight into the expression of the gradient
of Hexp in Theorem 2.16(ii) for a continuously differentiable performance
function. Also, explain why this formula is not directly applicable to the
function Hexp.
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Note that equation (E2.1) is referred to as the envelope theorem in the economics
literature.

E2.14 (Distortion gradient ascent flow). Given a (convex) polytope S ⊂ Rd and a
density function φ, consider n nodes p1, . . . , pn evolving under the continuous-time
gradient ascent flow of the multicenter function Hdist,

ṗi = 2 Aφ(Vi(P))(CMφ(Vi(P)) − pi), i ∈ {1, . . . , n}.

(i) What are the equilibrium points?

(ii) Show that Hdist is monotonically non-decreasing along the flow.

(iii) Show that the set SN is invariant, i.e., that the trajectories of all nodes
remain in S.

(iv) Use (i)–(iii) to apply the LaSalle Invariance Principle and show that the
solutions of the flow converge to the set of centroidal Voronoi configura-
tions in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1] and the density function

φ = exp
“
−

`
x − 1

8

´2 −
`
y − 1

8

´2
”

+ exp
“
−

`
x − 7

8

´2 −
`
y − 7

8

´2
”
.

Run simulations from different initial conditions and with different num-
bers of nodes. Show by illustration that multiple local maxima exist.

Hint: To perform step (iv), one should also prove that any two nodes never con-
verge to the same location (in finite or infinite time); this property needs to be
established because the function Hdist is not differentiable on such configurations.
For this and the next exercise, do not worry about proving this property and instead
refer to Cortés et al. (2005, Proposition 3.1).

E2.15 (Area gradient ascent flow). Given a (convex) polytope S ⊂ Rd, a density
function φ, and a radius a ∈ R>0, consider n nodes p1, . . . , pn evolving under the
continuous-time gradient ascent flow of the multicenter function Harea,a,

ṗi =

Z

Vi(P)∩ ∂B(pi,a)

nout(q)φ(q)dq, i ∈ {1, . . . , n},

where nout is the outward normal vector to the ball B(pi, a).

(i) What are the equilibrium points?

(ii) Show that Harea,a is monotonically non-decreasing along the flow.

(iii) Show that the set SN is invariant, i.e., that the trajectories of all nodes
remain in S.

(iv) Use (i-)-(iii) to apply the LaSalle Invariance Principle and show that
the solutions of the flow converge to the set of a-limited area-centered
Voronoi configurations in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1], the density function

φ(x, y) = exp
“
−

`
x − 1

8

´2 −
`
y − 1

8

´2
”

+ exp
“
−

`
x − 7

8

´2 −
`
y − 7

8

´2
”
,
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and the parameter a = 1
8
. Run simulations from different initial con-

ditions and with different numbers of nodes. Show by illustration that
multiple local maxima exist.
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Chapter Three

Robotic network models and complexity notions

This chapter introduces the main subject of study of this book, namely a
model for groups of robots that sense their own position, exchange messages
according to a geometric communication topology, process information, and
control their motion. We refer to such systems as robotic networks. The
content of this chapter has evolved from Mart́ınez et al. (2007a).

The chapter is organized as follows. The first section contains the for-
mal model. We begin by presenting the physical components of a network,
that is, the mobile robots and the communication service connecting them.
We then present the notion of control and communication law, and how a
law is executed by a robotic network. These notions subsume the notions
of synchronous network and distributed algorithm described in Section 1.5.
As an example of these notions, we introduce a simple law, called the agree
and pursue law, which combines ideas from leader election algorithms and
from cyclic pursuit (i.e., a game in which robots chase each other in a cir-
cular environment). In the second section, we propose a model of groups of
robots that interact through sensing, rather than communication. The third
section discusses time, space, and communication complexity notions for
robotic networks as extensions of the corresponding notions for distributed
algorithms. The complexity notions rely on the basic concept of coordina-
tion task and task achievement. The fourth and last section establishes the
time, space, and communication required by the agree and pursue law to
steer a group of robots to a uniformly spaced rotating configuration. We
end the chapter with three sections on, respectively, bibliographical notes,
proofs of the results presented in the chapter, and exercises.

3.1 A MODEL FOR SYNCHRONOUS ROBOTIC NETWORKS

Here, we introduce a model for a synchronous robotic network. This model
is an extension of the synchronous network model presented in Section 1.5.1.
We start by detailing the physical components of the network, which include
the robots themselves as well as the communication service among them.
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3.1.1 Physical components

We start by providing a basic definition of a robot and a model for how each
robot moves in space.

A mobile robot is a continuous-time continuous-space dynamical system
as defined in Section 1.3, that is, a tuple (X,U,X0, f), where

(i) X is d-dimensional space chosen among Rd, Sd, and the Cartesian
products Rd1 × Sd2 , for some d1 + d2 = d, called the state space;

(ii) U is a compact subset of Rm containing 0m, called the input space;

(iii) X0 is a subset of X, called the set of allowable initial states; and

(iv) f : X × U → Rd is a continuously differentiable control vector field
on X, that is, f determines the robot motion x : R≥0 → X via the
differential equation, or control system,

ẋ(t) = f(x(t), u(t)), (3.1.1)

subject to the control u : R≥0 → U .

We will use the terms “robot” and “agent” interchangeably. We refer to
x ∈ X and u ∈ U as a physical state and an input of the mobile robot,
respectively. Most often, the physical state will have the interpretation
of a location, or a location and velocity. We will often consider control-
affine vector fields. In such a case, we represent f as the ordered family
of continuously differentiable vector fields (f0, f1, . . . , fm) on X. In general,
the control signal u will not depend only on time but also on x and possible
other variables in the system. Note that there is no additional difficulty in
modeling mobile robots using dynamical systems defined on manifolds (Bullo
and Lewis, 2004), but we avoid it here in the interest of simplicity.

Example 3.1 (Planar vehicle models). The following models of control
systems are commonly used in robotics, beginning with the early works
of Dubins (1957), and Reeds and Shepp (1990). Figures 3.1(a) and (b)
show a two-wheeled vehicle and a four-wheeled vehicle, respectively. The
two-wheeled planar vehicle is described by the dynamical system

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (3.1.2)

with state variables x ∈ R, y ∈ R, and θ ∈ S1, describing the planar position
and orientation of the vehicle, and with controls v and ω, describing the
forward linear velocity and the angular velocity of the vehicle. Depending
on which set the controls are restricted to, we define the following models:
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(x, y)
θ

(a)

(x, y)
θ

φ

ℓ

(b)

Figure 3.1 A two-wheeled vehicle (a) and four-wheeled vehicle (b). In each case, the
orientation of the vehicle is indicated by the small triangle.

The unicycle. The controls v and ω take value in [−1, 1] and [−1, 1], re-
spectively.

The differential drive robot. Set v = (ωright +ωleft)/2 and ω = (ωright −
ωleft)/2 and assume that both ωright and ωleft take value in [−1, 1].

The Reeds–Shepp car. The control v takes values in {−1, 0, 1} and the
control ω takes values in [−1, 1].

The Dubins vehicle. The control v is set equal to 1 and the control ω
takes value in [−1, 1].

Finally, the four-wheeled planar vehicle, composed of a front and a rear axle
separated by a distance ℓ, is described by the same dynamical system (3.1.2)
with the following distinctions: (x, y) ∈ R2 is the position of the midpoint
of the rear axle, θ ∈ S1 is the orientation of the rear axle, the control v is
the forward linear velocity of the rear axle, and the angular velocity satisfies

ω =
v

ℓ
tanφ, where the control φ is the steering angle of the vehicle. •

Next, we generalize the notion of synchronous network introduced in Def-
inition 1.38 and introduce a corresponding notion of robotic network.

Definition 3.2 (Robotic network). The physical components of a robotic
network S consist of a tuple (I,R, Ecmm), where

(i) I = {1, . . . , n}, I is called the set of unique identifiers (UIDs);

(ii) R = {R[i]}i∈I = {(X [i], U [i], X
[i]
0 , f

[i])}i∈I is a set of mobile robots;

(iii) Ecmm is a map from
∏

i∈I X
[i] to the subsets of I × I—this map is

called the communication edge map.
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Additionally, if all mobile robots are identical, that is, if R[i] = (X,U,X0, f)
for all i ∈ {1, . . . , n}, then the robotic network is uniform. •

Remarks 3.3 (Notational conventions and meaning of the commu-
nication edge map).

(i) Following the convention established in Section 1.5, we let the su-
perscript [i] denote the variables and spaces which correspond to the

robot with unique identifier i; for instance, x[i] ∈ X [i] and x
[i]
0 ∈ X

[i]
0

denote the physical state and the initial physical state of robot R[i],
respectively. We refer to x = (x[1], . . . , x[n]) ∈ ∏

i∈I X
[i] as a state

of the network.

(ii) The map x 7→ (I, Ecmm(x)) models the topology of the communica-
tion service among the robots: at a physical state x = (x[1], . . . , x[n]),
two robots at locations x[i] and x[j] can communicate if and only if
the pair (i, j) is an edge in Ecmm(x) = Ecmm(x[1], . . . , x[n]). Accord-
ingly, we refer to (I, Ecmm(x)) as the communication graph at x.
When and which robots communicate is discussed in Section 3.1.2.
As communication graphs, we will often adopt one of the proximity
graphs discussed in Section 2.2, and in particular the (undirected)
disk graph. •

To make things concrete, let us present some examples of robotic networks
that will be commonly used later.

Example 3.4 (First-order robots with range-limited communica-
tion). Consider a group of robots moving in Rd, d ≥ 1. As in Chapter 2,
we let p denote a point in Rd and we let {p[1], . . . , p[n]} denote the robot
locations. Assume that the robots move according to

ṗ[i](t) = u[i](t), (3.1.3)

with u[i] ∈ [−umax, umax]
d; for an illustration, see Figure 3.2. According to

our mobile robot notation, these are identical robots of the form

(Rd, [−umax, umax]
d,Rd, (0d, e1, . . . ,ed)).

We assume that each robot can sense its own position and can communicate
with any other robot within distance r, that is, we adopt the r-disk graph
Gdisk(r) defined in Section 2.2 as communication graph. These data define
the uniform robotic network Sdisk.

It will also be interesting to consider first-order robots with communi-
cation graphs other than the disk graph; important examples include the
Delaunay graph GD, the limited Delaunay graph GLD(r), and the ∞-disk
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(x, y)

Figure 3.2 An omnidirectional vehicle. In addition to controlling the rotation speed of
the wheels, the vehicle can also actuate the direction in which they point.
This allows the vehicle to move in any direction according to the first-order
dynamics (3.1.3).

graph G∞-disk(r), discussed in Section 2.2. These three graphs, adopted as
communication models, give rise to three robotic networks denoted SD, and
SLD, S∞-disk, respectively. •

Example 3.5 (Planar vehicle robots with Delaunay communica-
tion). We consider a group of vehicle robots moving in an allowable envi-
ronment Q ⊂ R2 according to the planar vehicle dynamics introduced in
Example 3.1. We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical
states, where p[i] = (x[i], y[i]) ∈ Q corresponds to the position and θ[i] ∈ S1

corresponds to the orientation of the robot i ∈ I. As the communication
graph, we adopt the Delaunay graph GD on Q introduced in Section 2.2.
These data define the uniform robotic network Svehicles. •

Example 3.6 (Robots with line-of-sight communication). We con-
sider a group of robots moving in an allowable environment Q ⊂ R2. As in
Example 3.4, we let {p[1], . . . , p[n]} denote the robot locations and we assume
that the robots move according to the motion model (3.1.3). Each robot can
sense its own position and the boundary of ∂Q, and can communicate with
any other robot within distance r and within line of sight, that is, we adopt
the range-limited visibility graph Gvis-disk,Q in Q defined in Section 2.2 as
the communication graph. These data define the uniform robotic network
Svis-disk. •

Example 3.7 (First-order robots in S1). Consider a group of n robots
{θ[1], . . . , θ[n]} in S1, moving along on the unit circle with an angular ve-
locity equal to the control input. Each identical robot is described by the
tuple (S1, [−umax, umax],S

1, (0, e)), where e is the vector field on S1 describ-
ing unit-speed counterclockwise rotation. As in the previous examples, we

141

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

assume that each robot can sense its own position and can communicate
with any other robot within distance r along the circle, that is, we adopt
the r-disk graph Gdisk(r) on S1 defined in Section 2.2 as the communication
graph. These data define the uniform robotic network Scircle. •

We conclude this section with a remark.

Remark 3.8 (Congestion models in robotic networks). The behav-
ior of a robotic network might be affected by communication and physical
congestion problems.

Communication congestion: Omnidirectional wireless transmissions in-
terfere. Clear reception of a signal requires that no other signals are
present at the same point in time and space. In an ad hoc network,
node i receives a message transmitted by node j only if all other neigh-
bors of i are silent. In other words, the transmission medium is shared
among the agents. As the density of agents increases, so does wireless
communication congestion. The following asymptotic and optimiza-
tion results are known.

First, for ad hoc networks with n uniformly randomly placed nodes,
it is known (Gupta and Kumar, 2000) that the maximum-throughput
communication range r(n) of each node decreases as the density of
nodes increases; in d dimensions, the appropriate scaling law is r(n) ∈
Θ

(

(log(n)/n)1/d
)

. This is referred to as the connectivity regime in
percolation theory and statistical mechanics. Using the k-nearest-
neighbor graph over uniformly placed nodes, the analysis in Xue and
Kumar (2004) suggests that the minimal number of neighbors in a
connected network grows with log(n).

Second, a growing body of literature (Santi, 2005; Lloyd et al., 2005)
is available on topology control, that is, on how to compute trans-
mission power values in an ad hoc network so as to minimize energy
consumption and interference (due to multiple sources), while achiev-
ing various graph topological properties, such as connectivity or low
network diameter.

Physical congestion. Robots can collide: it is clearly important to avoid
“simultaneous access to the same physical area” by multiple robots.
It is reasonable to assume that, as the number of robots increases, so
should the area available for their motion. A convenient alternative
approach is the one taken by Sharma et al. (2007), where robots’ safety
zones decrease with decreasing robot speed. This suggests that, in a
fixed environment, individual nodes of a large ensemble have to move
at a speed decreasing with n, and in particular, at a speed proportional
to n−1/d. Roughly speaking, if the overall volume V in which the
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groups of agents move is constant, and there are n robots, then the
speed v at which they can move goes approximately as vd ≈ V

n .

In summary, one way to incorporate congestion effects into the robotic
network model is to assume that the parameters of the network physical
components depend upon the number of robots n. In the limit as n→ +∞,
we will sometimes assume that r and umax, the communication range and
the velocity upper bound in Examples 3.4 and 3.7, are of order n−1/d. •

3.1.2 Control and communication laws

Here, we present a discrete-time communication, continuous-time motion
model for the evolution of a robotic network subject to a communication
and control law. In our model, each robot evolves in the physical domain
in continuous time, senses its position in continuous time, and, in discrete
time, exchanges information with other robots and executes a state machine,
which we shall refer to as a processor. The following definition is a general-
ization of the concept of distributed algorithm introduced in Definition 1.39
and of the classical notion of dynamical feedback controller.

Definition 3.9 (Control and communication law). A control and com-
munication law CC for a robotic network S consists of the sets:

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆W [i], i ∈ I, sets of allowable initial values;

and of the following maps:

(i) msg[i] : X [i] ×W [i] × I → A, i ∈ I, called message-generation func-
tions;

(ii) stf[i] : X [i] × W [i] × An → W [i], i ∈ I, called (processor) state-
transition functions; and

(iii) ctl[i] : X [i] ×X [i] ×W [i] × An → U [i], i ∈ I, called (motion) control
functions.

If S is uniform and if W [i] = W , msg[i] = msg, stf[i] = stf, and ctl[i] = ctl,
for all i ∈ I, then CC is said to be uniform and is described by a tuple

(A,W, {W [i]
0 }i∈I ,msg, stf, ctl). •
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We will sometimes refer to a control and communication law as a dis-
tributed motion coordination algorithm. Roughly speaking, the rationale
behind Definition 3.9 is as follows (see Figure 3.3). The state of robot i in-

Transmit

and

receive

Update

processor

state

Update physical state

Figure 3.3 The execution of a control and communication law by a robotic network.

cludes both the physical state x[i] ∈ X [i] and the processor state w[i] ∈W [i]

of the state machine that robot i implements. These states are initialized

with values in their corresponding allowable initial sets X
[i]
0 and W

[i]
0 . We

assume that the robot can sense it own physical position x[i]. At each time
instant ℓ ∈ Z≥0, robot i sends to each of its out-neighbors j in the com-
munication digraph (I, Ecmm(x)) a message (possibly the null message)
computed by applying the message-generation function msg[i] to the current
values of its physical state x[i] and processor state w[i], and to the identity
j. Subsequently, but still at the time instant ℓ ∈ Z≥0, robot i updates the

value of its processor state w[i] by applying the state-transition function stf[i]

to the current value of its physical state x[i], processor state w[i] and to the
messages it receives from its in-neighbors. Between communication instants,
that is, for t ∈ [ℓ, ℓ + 1) for some ℓ ∈ Z≥0, the motion of the ith robot is
determined by applying the control function to the current value of x[i], the
value of x[i] at time ℓ, the current value of w[i], and the messages received at
time ℓ. This evolution model is very similar to the one that we introduced
for synchronous networks in Definition 1.40: in each communication round,
the first step is transmission and the second one is computation and, except
for the dependence on the physical state x, the communication and state
transition processes are identical.

These ideas are formalized in the following definition.

Definition 3.10 (Evolution of a robotic network). Let CC be a control
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and communication law for the robotic network S. The evolution of (S, CC)

from initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of

curves x[i] : R≥0 → X [i] and w[i] : Z≥0 →W [i], i ∈ I, defined by

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

x[i](t), x[i](⌊t⌋), w[i](⌊t⌋), y[i](⌊t⌋)
)

)

,

where ⌊t⌋ = max{ℓ ∈ Z≥0 | ℓ < t}, and

w[i](ℓ) = stf[i](x[i](ℓ), w[i](ℓ− 1), y[i](ℓ)),

with x[i](0) = x
[i]
0 and w[i](−1) = w

[i]
0 , i ∈ I. In the previous equations, y[i] :

Z≥0 → An (describing the messages received by processor i) has components

y
[i]
j (ℓ), for j ∈ I, defined by

y
[i]
j (ℓ) =

{

msg[j](x[j](ℓ), w[j](ℓ− 1), i), if (j, i) ∈ Ecmm

(

x[1](ℓ), . . . , x[n](ℓ)
)

,

null, otherwise.
•

For convenience, we define w(t) = w(⌊t⌋) for all t ∈ R≥0, and let R≥0 ∋
t 7→ (x(t), w(t)) denote the curves x[i] and w[i], for i ∈ {1, . . . , n}.

Remarks 3.11 (Simplifications of control and communication laws).

(i) A control and communication law CC is static if the processor state
set W [i] is a singleton for all i ∈ I. This means that there is no
meaningful evolution of the processor state. In this case, CC can be
described by a tuple (A, {msg[i]}i∈I , {ctl[i]}i∈I), with msg[i] : X [i] ×
I → A, and ctl[i] : X [i] ×X [i] × An → U [i], for i ∈ I.

(ii) A control and communication law CC is data-sampled if the con-
trol functions are independent of the current position of the robot
and depend only upon the robot’s position at the last sample time.
Specifically, the control functions have the following property: given
a processor state w[i] ∈ W [i], an array of messages y[i] ∈ An, a cur-

rent state x[i], and a state at last sample time x
[i]
smpld, the control

input ctl[i](x[i], x
[i]
smpld, w

[i], y[i]) is independent of x[i], for all i ∈ I.
In this case, the control functions can be described by maps of the
form ctl[i] : X [i] ×W [i] × An → U [i], for i ∈ I.

(iii) In many control and communication laws, the robots exchange full
information about their states, including both their processor and
their physical states. For such laws, we identify the communication
alphabet with A = (X × W )∪{null} and we refer to the corre-
sponding message-generation function msgstd(x,w, j) = (x,w) as
the standard message-generation function.
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Note that we allow the processor state set and the communication alphabet
to contain an infinite number of symbols. In other words, we assume that a
robot can store and transmit a (finite number of) integer and real numbers,
among other things. This is equivalent to assuming that we neglect any
inaccuracies due to quantization, as we did in Section 1.6. •

Remark 3.12 (Extensions of control and communication laws).
Here, we briefly discuss alternative models and extensions of the proposed
models.

Asynchronous sensor-based interactions. In the early network model
proposed by Suzuki and Yamashita (1999), robots are referred to as
“anonymous” and “oblivious” in precisely the same way in which we
defined control and communication laws to be uniform and static, re-
spectively. As compared with our notion of robotic network, the model
in Suzuki and Yamashita (1999) is more general in that the robots’ ac-
tivation schedules do not necessarily coincide (i.e., this model is asyn-
chronous), and at the same time it is less general in that (1) robots
cannot communicate any information other than their respective po-
sitions, and (2) each robot observes every other robot’s position (i.e.,
the complete communication graph is adopted). In the Section 3.2
below, we present a model in which robots rely on sensing rather than
communication for their interaction.

Discrete-time motion models. For some algorithms in later chapters, it
will be convenient to consider discrete-time motion models; for exam-
ple, we present discrete-time motion models for first-order agents in
Section 4.1. In some other cases, it will be convenient to consider dy-
namical interactions between agents taking place in continuous time.

Stochastic link models. Although we do not present any results on this
topic in this notes, it is possible to develop robotic networks models
over random graphs and random geometric graphs, as studied by Bol-
lobás (2001) and Penrose (2003). Furthermore, it is of interest to
consider communication links with time-varying rates. •

3.1.3 The agree and pursue control and communication law

We conclude this section with an example of a dynamic control and com-
munication law. The problem is described as follows: a collection of robots
with range-limited communication are placed on the unit circle; the robots
move and communicate with the objectives of (1) agreeing on a direction of
motion (clockwise or counterclockwise) and (2) achieving an equidistant con-
figuration where all robots are equally angularly spaced. To achieve these
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two objectives, we combine ideas from leader election algorithms for syn-
chronous networks (see Section 1.5.4) and from cyclic pursuit problems (see
Exercise E1.30): the robots move a distance proportional to an appropriate
inter-robot separation, and they repeatedly compare their identifiers to dis-
cover the direction of motion of the robot with the largest identifier. In other
words, the robots run a leader election task in their processor states and a
uniform robotic deployment task in their physical state—these are among
the most basic tasks in distributed algorithms and cooperative control. We
present the algorithm here and characterize its correctness and performance
later in the chapter.

From Example 3.7, we consider the uniform network Scircle of locally con-
nected first-order robots on S1. For r, umax, kprop ∈ ]0, 1

2 [ with kpropr ≤ umax,
we define the agree & pursue law, denoted by CCagree & pursue, as the
uniform data-sampled law loosely described as follows:

[Informal description] The processor state consists of dir (the
robot’s direction of motion) taking values in {c, cc} (meaning
clockwise and counterclockwise) and max-id (the largest UID
received by the robot, initially set to the robot’s UID) taking
values in I. In each communication round, each robot transmits
its position and its processor state. Among the messages received
from agents moving toward its position, each agent picks the
message with the largest value of max-id. If this value is larger
than its own value, the agent resets its processor state with the
selected message. Between communication rounds, each robot
moves in the clockwise or counterclockwise direction depending
on whether its processor state dir is c or cc. Each robot moves
kprop times the distance to the immediately next neighbor in the
chosen direction, or, if no neighbors are detected, kprop times the
communication range r.

Note that the processor state with the largest UID will propagate through-
out the network as in the floodmax algorithm for leader election. Also,
note that the assumption kpropr ≤ umax guarantees that the desired control
is always within the allowable range [−umax, umax]. Next, we define the law
formally:

Robotic Network: Scircle, first-order agents in S1

with absolute sensing of own position, and
with communication range r

Distributed Algorithm: agree & pursue

Alphabet: A = S1 × {c, cc} × I ∪{null}
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Processor State: w = (dir, max-id), where

dir ∈ {c, cc}, initially: dir[i] unspecified

max-id ∈ I, initially: max-id[i] = i for all i

% Standard message-generation function
function msg(θ, w, i)

1: return (θ, w)

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) AND (distcc(θ, θrcvd) ≤ r AND dirrcvd =

c) OR (distc(θ, θrcvd) ≤ r AND dirrcvd = cc) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

function ctl(θsmpld, w, y)

1: dtmp := r
2: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
3: if (dir = cc) AND (distcc(θsmpld, θrcvd) < dtmp) then
4: dtmp := distcc(θsmpld, θrcvd)
5: utmp := kpropdtmp

6: if (dir = c) AND (distc(θsmpld, θrcvd) < dtmp) then
7: dtmp := distc(θsmpld, θrcvd)
8: utmp := −kpropdtmp

9: return utmp

An implementation of this control and communication law is shown in
Figure 3.4. As parameters, we select n = 45, r = 2π/40, umax = 1/4 and
kprop = 7/16. Along the evolution, all robots agree upon a common direction
of motion and, after a suitable time, they reach a uniform distribution.

Figure 3.4 The agree & pursue law. Red-colored disks and blue-colored circles cor-
respond to robots moving counterclockwise and clockwise, respectively. The
initial positions and the initial directions of motion are randomly generated.
The five diagrams depict the state of the network at times 0, 9, 20, 100, and
800.
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3.2 ROBOTIC NETWORKS WITH RELATIVE SENSING

The model presented above assumes the ability of each robot to know its own
absolute position. Here, we treat the alternative setting in which the robots
do not communicate amongst themselves, but instead detect and measure
each other’s relative position through appropriate sensors. Additionally,
we assume that the robots will perform measurements of the environment
without having any a priori knowledge of it. We assume that robots do not
have the ability to perform measurements expressed in a common reference
frame. An early reference in which relative information is adopted is Lin
et al. (2005).

3.2.1 Kinematics notions

Because the robots do not have a common reference frame, all the measure-
ments generated by their on-board sensors are expressed in a local reference
frame. To formalize this fact, it is useful to review some basic kinematics
conventions. We let Σfixed = (pfixed, {xfixed,yfixed, zfixed}) be a fixed refer-
ence frame in R3. A point q, a vector v, and a set of points S expressed
with respect to the frame Σfixed are denoted by qfixed, vfixed and Sfixed, re-
spectively. Next, let Σb = (pb, {xb,yb, zb}) be a reference frame fixed to

pfixed

z
fixed

y
fixed

xfixed

pb
fixed

q

qfixed

pb

x
b

y
b

z
b

qb

Figure 3.5 Inertially fixed and body-fixed frames in R3.

a moving body. The origin of Σb is the point pb, denoted by pb
fixed when

expressed with respect to Σfixed. The orientation of Σb is characterized by
the d-dimensional rotation matrix Rb

fixed, whose columns are the frame vec-
tors {xb,yb, zb} of Σb expressed with respect to Σfixed. We recall here the
definition of the group of rotation matrices in d-dimensions:

SO(d) = {R ∈ Rd×d | RRT = Id, det(R) = +1}.
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With these notations, changes of reference frames are described by

qfixed = Rb
fixedqb + pb

fixed,

vfixed = Rb
fixedvb,

Sfixed = Rb
fixedSb + pb

fixed. (3.2.1)

Note that these change-of-frames formulas also hold in the planar case with
the corresponding definition of the rotation matrix in SO(2).

Remark 3.13 (Comparison with literature). In our notation, the sub-
script denotes the frame with respect to which the quantity is expressed.
Other references in the literature sometimes adopt the opposite convention,
in which the superscript denotes the frame with respect to which the quan-
tity is expressed. •

3.2.2 Physical components

In what follows, we describe our notion of mobile robots equipped with rel-
ative sensors. We consider a group of n robots moving in an allowable
environment Q ⊂ Rd, for d ∈ {2, 3}, and we assume that a reference frame
Σ[i], for i ∈ {1, . . . , n}, is attached to each robot (see Figure 3.6). Expressed
with respect to the fixed frame Σfixed, the ith frame Σ[i] is described by a

position p
[i]
fixed ∈ Rd and an orientation R

[i]
fixed ∈ SO(d). The continuous-time

motion and discrete-time sensing models are described as follows.

Σfixed

Σ[1]

Σ[2]

Σ[3]

Σ[4]

Figure 3.6 A robotic network with relative sensing. A group of four robots moves in R2.
Each robot i ∈ {1, . . . , 4} has its own reference frame Σ[i].

Motion model: We select a simple motion model: for all t ∈ R≥0, the
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orientation R
[i]
fixed is constant in time and robot i translates according to

ṗ
[i]
fixed(t) = R

[i]
fixedu

[i]
i , (3.2.2)

that is, the ith control input u
[i]
i is known and applied in the robot frame.

Each control input u
[i]
i , i ∈ {1, . . . , n}, takes values in a compact input

space U . Clearly, it would be possible to consider a motion model with
time-varying orientation and we refer the reader to Exercise E3.1, where we
do so.

Sensing model: At each discrete time instant, robot i activates a sensor
that detects the presence and returns a measurement about the relative po-
sition of any object (robots or environment boundary) inside a given “sensor
footprint.” We describe the model in two steps. First, each robot measures

Σfixed

Σ[i]

S
[i]

(a)

Σfixed

Σ[i]

S [i]

(b)

Figure 3.7 Examples of sensor footprints. (a) The cone-shaped sensor footprint of a vehicle
equipped with a camera. (b) The 270-degree wedge-shaped sensor footprint of
a vehicle equipped with a laser scanner.

other robots’ positions and the environment as follows.

Sensing other robots’ positions. There exists a set Arbt containing the
null element, called the sensing alphabet, and a map rbt-sns : Rd →
Arbt, called the sensing function, with the interpretation that robot i

acquires the symbol rbt-sns(p
[j]
i ) ∈ Arbt for each robot j ∈ {1, . . . , n}\

{i}.
Sensing the environment. There exists a set Aenv containing the null

element, called the environment sensing alphabet, and a map env-sns :
P(Rd) → Aenv, called the environment sensing function, with the in-
terpretation that robot i acquires the symbol env-sns(Qi) ∈ Aenv.
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Second, we let S[i] ⊂ Rd be the sensor footprint of robot i and we let

S
[i]
i be its expression in the frame Σ[i] (see Figure 3.7). For simplicity, we

assume that all robot sensors are equal, so that we can write S
[i]
i = S. We

require both sensing functions to provide no information about robots and
boundaries that are outside S in the following two meanings: (i) if p is any
point outside S, then rbt-sns(p) = null; and (ii) if W is any subset of Rd,
env-sns(W ) = env-sns(W ∩S).

We summarize this discussion with the following definition.

Definition 3.14 (Network with relative sensing). The physical com-
ponents of a network with relative sensing consist of n mobile robots with
identifiers {1, . . . , n}, with configurations in Q×SO(d), for an allowable en-
vironment Q ⊂ Rd, with dynamics described by equation (3.2.2), and with
relative sensors described by the sensor footprint S, sensing alphabets Arbt

and Aenv, and sensing functions rbt-sns and env-sns. •

To make things concrete, let us present two examples of robotic networks
with relative sensing that are analogs of the “communication-based” robotic
networks Sdisk and Svis-disk in Examples 3.4 and 3.6.

Example 3.15 (Disk sensor and corresponding relative-sensing net-
work). Given a sensing range r ∈ R>0, the disk sensor has sensor footprint
B(0d, r), that is, a disk sensor measures any object (robot and environment
boundary) within distance r. Regarding sensing of other robots, we assume
that the alphabet is Arbt = Rd ∪{null} and that the sensing function is

rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n} \ {i}, inside the sensor foot-

print B(0d, r), and rbt-sns(p
[j]
i ) = null, otherwise. Regarding sensing of

the environment, we assume that the alphabet is Aenv = P(Rd) and that the
sensing function is env-sns(Qi) = Qi ∩B(0d, r). A group of robots with disk
sensors defines the robotic network with relative sensing Srs

disk. •

Example 3.16 (Range-limited visibility sensor and corresponding
relative-sensing network). Given a sensing range r ∈ R>0, the range-
limited visibility sensor has sensor footprint B(0d, r) and performs measure-
ments only of objects within unobstructed line of sight. Regarding sensing
of other robots, we assume that the alphabet is Arbt = Rd ∪{null} and that

the sensing function is rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n} \ {i},

inside the range-limited visibility set Vidisk(02;Qi), and rbt-sns(p
[j]
i ) = null,

otherwise. Regarding sensing of the environment, we assume1 that the al-
phabet is Aenv = P(Rd) and that the environment sensor measures the range-

1It would be equivalent to assume that the robot can sense every portion of ∂Q that is within
distance r and that is visible from the robot’s position.
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limited visibility set Vidisk(p
[i]
fixed;Q) expressed with respect to the frame Σ[i];

for the definition of range-limited visibility set, see Section 2.1.2. In other
words, the environment sensing function is env-sns(Qi) = Vidisk(02;Qi).
This is illustrated in Figure 3.8. A group of robots with range-limited visi-

p
[i]
fixed

Σ[i]

02

Σ[i]

Figure 3.8 The left-hand plot depicts the range-limited visibility set Vidisk(p
[i]
fixed; Q) ex-

pressed with respect to an inertially fixed frame. The right-hand plot de-
picts the range-limited visibility set expressed with respect to the body-fixed
frame Σ[i], that is, Vidisk(02; Qi).

bility sensors defines the robotic network with relative sensing Srs
vis-disk. •

Remark 3.17 (Sensing model consequences). The proposed sensing
model has the following two consequences:

(i) Robots have no information about the absolute position and orienta-
tion of themselves, the other robots or any part of the environment.

(ii) The relative sensing capacity of the robots gives rise to a proximity
graph, called the sensing graph, whose edges are the collection of
robot pairs that are within sensing range. For example, in the net-
work Srs

disk, the sensing graph is the disk graph Gdisk(r). In general,
sensing graphs are directed. •

3.2.3 Relative-sensing control laws

As we did for robotic networks with interactions based on communication,
we define here control laws based on relative sensing and we describe the
closed-loop evolution of robotic networks with relative sensing.

First, we consider a robotic network with relative sensing Srs characterized
by: identifiers {1, . . . , n}, configurations in Q × SO(d), for an allowable
environment Q ⊂ Rd, dynamics described by equation (3.2.2), and relative
sensors described by the sensor footprint S, sensing alphabets Arbt and
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Aenv, and sensing functions rbt-sns and env-sns. A relative-sensing control
law RSC for the robotic network with relative sensing Srs consists of the
following tuple:

(i) W , called the processor state set, with a corresponding set of allow-
able initial values W0 ⊆W ;

(ii) stf : W × An
rbt × Aenv → W , called the (processor) state-transition

function; and

(iii) ctl : W × An
rbt × Aenv → U , called the (motion) control function.

As for robotic networks, we say that RSC is static if W is a singleton for
all i ∈ {1, . . . , n}; in this case, RSC can be described by a motion control
function ctl : An

rbt × Aenv → U . Additionally, if the environment Q = Rd,
then RSC can be described by a motion control function ctl : W×An

rbt → U .

Second, the evolution of (Srs,RSC) from initial conditions (p
[i]
0 , R

[i]
fixed) ∈

Rd × SO(d) and w
[i]
0 ∈ W0, i ∈ {1, . . . , n} is the collection of curves p

[i]
fixed :

R≥0 → Rd and w[i] : Z≥0 →W , i ∈ {1, . . . , n}, defined by

ṗ
[i]
fixed(t) = R

[i]
fixed ctl

(

w[i](⌊t⌋), y[i](⌊t⌋), y[i]
env(⌊t⌋)

)

,

w[i](ℓ) = stf(w[i](ℓ− 1), y[i](ℓ), y[i]
env(ℓ)),

with p
[i]
fixed(0) = p

[i]
0 and w[i](−1) = w

[i]
0 , i ∈ {1, . . . , n}. In the previous

equations, y[i] : Z≥0 → An
rbt (describing the robot measurements taken by

sensor i) with components y
[i]
j (ℓ), for j ∈ {1, . . . , n}, and y

[i]
env : Z≥0 → Aenv

(describing the environment measurements taken by sensor i) are defined by

y
[i]
j (ℓ) = rbt-sns(p

[j]
i (ℓ)), y[i]

env(ℓ) = env-sns(Qi(ℓ)).

In the last equation, p
[j]
i and Qi(ℓ) denote the position of the j-th robot and

the environment Q as expressed with respect to the moving frame Σ[i].

3.2.4 Equivalence between control and communication laws and relative-

sensing control laws

Consider a “communication-based” robotic network S1 with a control and
communication law CC1 with the following properties:

(i) Regarding S1: the network is uniform, the state space is X = Rd

with states denoted by x[i] = p[i], the communication graph is the
r-disk graph, and the robot dynamics are ṗ[i] = u[i].

(ii) Regarding CC1: the control and communication law is uniform and
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data-sampled, the communication alphabet is A = Rd ∪{null}, and
the message-generation function is msg(p, w, j) = p.

Given a network and a law (S1, CC1) satisfying (i) and (ii), the control
and communication law CC1 is invariant if its state transition and control
maps satisfy, for all p ∈ Rd, w ∈W , y ∈ An, and R ∈ SO(d),

stf(p, w, y) = stf
(

0d, w,R(y − p)
)

,

ctl(p, w, y) = RT ctl
(

0d, w,R(y − p)
)

,

where the ith component of R(y − p) ∈ An is R(yi − p) if yi ∈ Rd, or null

if yi = null.

Next, consider a relative-sensing network S2 with disk sensors as in Exam-
ple 3.15, that is, assume that the sensing footprint is B(0d, r), the sensing
alphabet is Arbt = Rd ∪{null}, and the sensing function equals the identity
function in B(0d, r). We assume no environment sensing as we set Q = Rd.
The communication and control law CC1 and the relative-sensing control law
RSC2 for network S2 are equivalent if their processor state sets identical, for
example, denoting both by W , and their state transition and control maps
satisfy, for all w ∈W and y ∈ Rd ∪{null} = An = An

rbt,

stf1(0d, w, y) = stf2(w, y), and ctl1(0d, w, y) = ctl2(w, y).

Proposition 3.18 (Evolution equivalence). If CC1 is invariant and if
CC1 and RSC2 are equivalent, then the evolutions of the control and com-
munication laws (S1, CC1) and (S2,RSC2) from identical initial conditions
are identical.

Proof. Assume that the messages and measurements array y[i](t) received
by the i-th robot at time t in the communication-based network and in the
relative-sensing networks are equal to, respectively:

p
[j1]
fixed, . . . , p

[jk]
fixed, and p

[j1]
i , . . . , p

[jk]
i .

Under this assumption, the evolutions of the communication-based network
and of the relative-sensing networks are written, respectively, as,

ṗ
[i]
fixed = ctl1(p

[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed),

ṗ
[i]
fixed = R

[i]
fixedctl2(w

[i], p
[j1]
i , . . . , p

[jk]
i ).

From equation (3.2.1), we know that, for all j ∈ {j1, . . . , jk},

p
[j]
fixed = R

[i]
fixedp

[j]
i + p

[i]
fixed =⇒ p

[j]
i = (R

[i]
fixed)

T (p
[j]
fixed − p

[i]
fixed).
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From this equality and from the fact that CC1 is invariant, we observe that

ctl1(p
[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed) = R

[i]
fixedctl1(0d, w

[i], p
[j1]
i , . . . , p

[jk]
i ).

Since CC1 and RSC2 are equivalent, the two evolution equations coincide.
A similar reasoning also shows that the evolutions of the processor states
are identical. �

Remark 3.19 (Communication-based laws on relative-sensing net-
works). Proposition 3.18 implies the following fact. An invariant control
and communication law for a robotic network satisfying appropriate prop-
erties can be implemented on an appropriate relative-sensing network as a
relative-sensing control law. •

3.3 COORDINATION TASKS AND COMPLEXITY NOTIONS

In this section, we introduce concepts and tools that are useful analyzing
a communication and control law in a robotic network; our treatment is
directly generalized to relative-sensing networks. We address the following
questions: What is a coordination task for a robotic network? When does a
control and communication law achieve a task? And with what time, space,
and communication complexity?

3.3.1 Coordination tasks

Our first analysis step is to characterize the correctness properties of a com-
munication and control law. We do so by defining the notions of task and
of task achievement by a robotic network.

Definition 3.20 (Coordination task). Let S be a robotic network and
let W be a set.

(i) A coordination task is a map T :
∏

i∈I X
[i] ×Wn → {true, false}.

(ii) If W is a singleton, then the coordination task is said to be static
and can be described by a map T :

∏

i∈I X
[i] → {true, false}.

Additionally, let CC be a control and communication law for S:

(i) The law CC is compatible with the task T :
∏

i∈I X
[i] × Wn →

{true, false} if its processor state takes values in W, that is, if
W [i] = W, for all i ∈ I.

(ii) The law CC achieves the task T if it is compatible with it and if, for

all initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, there exists
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T ∈ R>0 such that the network evolution t 7→ (x(t), w(t)) has the
property that T(x(t), w(t)) = true for all t ≥ T . •

Remark 3.21 (Temporal logic). Loosely speaking, the phrase “a law
achieves a task” means that the network evolutions reach (and remain at)
a specified pattern in the robot physical or processor state. In other words,
the task is achieved if at some time and for all subsequent times, the pred-
icate evaluates to true along system trajectories. It is possible to consider
more general tasks based on more expressive predicates on trajectories. Such
predicates can be defined through various forms of temporal and proposi-
tional logic, (see, e.g., Emerson, 1994). In particular, (linear) temporal logic
contains certain constructs that allow reasoning in terms of time and is hence
appropriate for robotic applications—as argued, for example, by Fainekos
et al. (2005). Network tasks such as periodically visiting a desired set of
configurations can be encoded with temporal logic statements. •

Example 3.22 (Direction agreement and equidistance tasks). From
Example 3.7, consider the uniform network Scircle of locally connected first-
order agents in S1. From Section 3.1.3, recall the agree & pursue control
and communication law CCagree & pursue with processor state taking values
in W = {cc, c} × I. There are two tasks of interest. First, we define the
direction agreement task Tdir : (S1)n ×Wn → {true, false} by

Tdir(θ, w) =

{

true, if dir[1] = · · · = dir[n],

false, otherwise,

where θ = (θ[1], . . . , θ[n]), w = (w[1], . . . , w[n]), and w[i] = (dir[i], max-id[i]),
for i ∈ I. Furthermore, for ε > 0, we define the static (agent) equidistance
task Tε-eqdstnc : (S1)n → {true, false} to be true if and only if

∣

∣ min
j 6=i

distc(θ
[i], θ[j]) − min

j 6=i
distcc(θ

[i], θ[j])
∣

∣ < ε, for all i ∈ I.

In other words, Tε-eqdstnc is true when, for every agent, the distances to the
closest clockwise neighbor and to the closest counterclockwise neighbor are
approximately equal. •

3.3.2 Complexity notions

We are now ready to define the notions of time, space and communication
complexity. These notions describe the cost that a certain control and com-
munication law incurs while completing a certain coordination task. Addi-
tionally, the complexity of a task is the infimum of the costs incurred by all
laws that achieve that task. We begin by highlighting a difference between
what follows and the complexity treatment for synchronous networks.
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Remark 3.23 (Termination via task completion). As discussed in Re-
mark 1.44 in Section 1.5, it is possible to consider various algorithm termi-
nation notions. Here, we will establish the completion of an algorithm as
the instant when a given task is achieved. •

First, we define the time complexity of an achievable task as the minimum
number of communication rounds needed by the agents to achieve the task T.

Definition 3.24 (Time complexity). Let S be a robotic network and let
T be a coordination task for S. Let CC be a control and communication law
for S compatible with T:

(i) the (worst-case) time complexity to achieve T with CC from initial

conditions (x0, w0) ∈
∏

i∈I X
[i]
0 × ∏

i∈I W
[i]
0 is

TC(T, CC , x0, w0) = inf {ℓ | T(x(k), w(k)) = true , for all k ≥ ℓ},
where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial
condition (x0, w0);

(ii) the (worst-case) time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈
∏

i∈I

X
[i]
0 ×

∏

i∈I

W
[i]
0

}

;

(iii) the (worst-case) time complexity of T is

TC(T) = inf{TC(T, CC) | CC compatible with T}. •

Next, we quantify memory and communication requirements of commu-
nication and control laws. We assume that elements of the processor state
set W or of the alphabet set A might amount to multiple “basic memory
units” or “basic messages.” We let |W |basic and |A|basic denote the number
of basic memory units and basic messages required to represent elements
of W and A, respectively. The null message has zero cost. To clarify this
assumption, we adopt two conventions. First, as in Section 1.5.2, we assume
that a “basic memory unit” or a “basic message” contains log(n) bits. This
implies that the log(n) bits required to store or transmit a robot identifier
i ∈ {1, . . . , n} are equivalent to one “basic memory unit.” Second, as men-
tioned in Remark 3.11, we assume that a processor can store and transmit
a (finite number of) integer and real numbers, and we adopt the convention
that any such number is quantized and represented by a constant number
of basic memory units or basic messages.

We now quantify memory requirements of algorithms and tasks by count-

158

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

ing the required number of basic memory units. Let the network S, the task
T, and the control and communication law CC be as in Definition 3.24.

Definition 3.25 (Space complexity).

(i) The (worst-case) space complexity to achieve T with CC , denoted
by SC(T, CC), is the maximum number of basic memory units re-
quired by a robot processor executing the CC on S among all robots
and among all allowable initial physical and processor states until
termination; and

(ii) the space complexity of T is the infimum among the space complex-
ities of all control and communication laws that achieve T. •

The set of all non-null messages generated during one communication
round from network state (x,w) is denoted by

M(x,w) = {(i, j) ∈ Ecmm(x) | msg[i](x[i], w[i], j) 6= null}.
We now quantify the mean and total communication requirements of algo-
rithms and tasks by counting the number of transmitted basic messages.

Definition 3.26 (Mean and Total Communication complexity).

(i) The (worst-case) mean communication complexity and the (worst-
case) total communication complexity to achieve T with CC from

(x0, w0) ∈
∏

i∈I X
[i]
0 × ∏

i∈I W
[i]
0 are, respectively,

MCC(T, CC , x0, w0) =
|A|basic

τ

τ−1
∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

TCC(T, CC , x0, w0) = |A|basic

τ−1
∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial
condition (x0, w0) and where τ = TC(CC , T, x0, w0). Here, MCC is
defined only for initial conditions (x0, w0) with the property that
T(x0, w0) = false;

(ii) the (worst-case) mean communication complexity (resp. the (worst-
case) total communication complexity) to achieve T with CC is the
supremum of MCC(T, CC , x0, w0) (resp. TCC(T, CC , x0, w0)) over all
allowable initial states (x0, w0); and

(iii) the (worst-case) mean communication complexity (resp. the worst-
case total communication complexity) of T is the infimum among
the mean communication complexity (resp. the total communication
complexity) of all control and communication laws achieving T. •
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By construction, one can verify that it always happens that

TCC(T, CC) ≤ MCC(T, CC) · TC(T, CC). (3.3.1)

We conclude this section with possible variations and extensions of the com-
plexity definitions.

Remark 3.27 (Infinite-horizon mean communication complexity).
The mean communication complexity MCC measures the average cost of the
communication rounds required to achieve a task over a finite time horizon;
a similar statement holds for the total communication complexity TCC. One
might be interested in a notion of mean communication complexity required
to maintain the task true for all times. Accordingly, the infinite-horizon
mean communication complexity of CC from initial conditions (x0, w0) is

IH-MCC(CC , x0, w0) = lim
τ→+∞

|A|basic

τ

τ
∑

ℓ=0

|M(x(ℓ), w(ℓ))|. •

Remark 3.28 (Communication complexity in omnidirectional net-
works). In omnidirectional wireless networks, the standard operation mode
is for all neighbors of a node to receive the signal that it transmits. In other
words, the transmission is omnidirectional rather than unidirectional. It
is straightforward to require the message-generation function to have the
property that the output it generates be independent of the intended re-
ceiver. Under such assumptions, it make sense to count as communication
complexity not the number of messages transmitted in the network, but the
number of transmissions, that is, a unit cost per node rather than a unit
cost per edge of the network. •

Remark 3.29 (Energy complexity). Given a model for the energy con-
sumed by the robot to move and to transmit a message, one can easily
define a notion of energy complexity for a control and communication law.
In modern wireless transmitters, the energy consumption in transmitting a
signal at a distance r varies with a power of r. Analogously, energy con-
sumption is an increasing function of distance traveled. We consider this to
be a promising avenue for further research. •

3.3.3 Invariance under rescheduling

Here we discuss the invariance properties of time and communication com-
plexity under the rescheduling of a control and communication law. The
idea behind rescheduling is to “spread” the execution of the law over time
without affecting the trajectories described by the robots.
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For simplicity we consider the setting of static laws; similar results can
be obtained for the general setting. Also, for ease of presentation, we al-
low our communication and control laws to be time dependent, that is, we
consider message-generation functions and motion control functions of the
form msg[i] : Z≥0 ×X [i] × I → A and ctl[i] : R≥0 ×X [i] ×X [i] × An → U [i],
respectively. Definition 3.10 for network evolution can be readily extended
to this more general time-dependent setup.

Let S = (I,R, Ecmm) be a robotic network in which each robot is a drift-

less control system (see Section 1.3). Let CC = (A, {msg[i]}i∈I , {ctl[i]}i∈I)
be a static control and communication law. In what follows, we define a
new control and communication law by modifying CC ; to do so, we intro-
duce some notation. Let s ∈ N, with s ≤ n, and let PI = {I0, . . . , Is−1} be
an s-partition of I, that is, I0, . . . , Is−1 ⊂ I are disjoint and nonempty
and I = ∪s−1

k=0 Ik. For i ∈ I, define the message-generation functions

msg
[i]
PI

: Z≥0 ×X [i] × I → A by

msg
[i]
PI

(ℓ, x, j) = msg[i](⌊ℓ/s⌋ , x, j), (3.3.2)

if i ∈ Ik and k = ℓ mod s, and msg
[i]
PI

(ℓ, x, j) = null otherwise. According
to this message-generation function, only the agents with a unique identifier
in Ik will send messages at time ℓ, where ℓ ∈ {k + as}a∈Z≥0

. Equivalently,
this can be stated as follows: according to (3.3.2), the messages originally
sent at the time instant ℓ are now rescheduled to be sent at the time instants
F (ℓ)−s+1, . . . , F (ℓ), where F : Z≥0 → Z≥0 is defined by F (ℓ) = s(ℓ+1)−1.
Figure 3.9 illustrates this idea. For i ∈ I, define the control functions

ℓ ℓ + 1

F (ℓ) − s + 1 F (ℓ) F (ℓ) + 1

Figure 3.9 Under the rescheduling, the messages that are sent at the time instant ℓ under
the control and communication law CC are rescheduled to be sent over the
time instants F (ℓ)− s + 1, . . . , F (ℓ) under the control and communication law
CC (s,PI ).

ctl[i] : R≥0 ×X [i] ×X [i] × An → U [i] by

ctl
[i]
PI

(t, x, xsmpld, y) = ctl[i]
(

t− ℓ+ F−1(ℓ), x, xsmpld, y
)

, (3.3.3)

if t ∈ [ℓ, ℓ + 1] and ℓ = −1 mod s, and ctl
[i]
PI

(t, x, xsmpld, y) = 0 otherwise.
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Here, F−1 : Z≥0 → Z≥0 is the inverse of F , defined by F−1(ℓ) = ℓ+1
s − 1.

Roughly speaking, the control law ctl
[i]
PI

makes the agent i wait for the time
intervals [ℓ, ℓ+1], with ℓ ∈ {as−1}a∈N, to execute any motion. Accordingly,
the evolution of the robotic network under the original law CC during the
time interval [ℓ, ℓ+ 1] now takes place when all the corresponding messages
have been transmitted, that is, along the time interval [F (ℓ), F (ℓ)+ 1]. The
following definition summarizes this construction.

Definition 3.30 (Rescheduling of control and communication laws).
Let S = (I,R, Ecmm) be a robotic network with driftless physical agents,

and let CC = (Z≥0,A, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and commu-
nication law. Let s ∈ N, with s ≤ n, and let PI be an s-partition of I. The

control and communication law CC (s,PI) = (Z≥0,A, {msg
[i]
PI
}i∈I , {ctl[i]PI

}i∈I)
defined by equations (3.3.2) and (3.3.3) is called a PI-rescheduling of CC . •

The following result, whose proof is presented in Section 3.6.1, shows that
the total communication complexity is invariant under rescheduling.

Proposition 3.31 (Complexity of rescheduled laws). With the as-
sumptions of Definition 3.30, let T :

∏

i∈I X
[i] → {true, false} be a coordi-

nation task for S. Then, for all x0 ∈ ∏

i∈I X
[i]
0 ,

TC(T, CC (s,PI), x0) = s · TC(T, CC , x0) .

Moreover, if Crnd is additive, then, for all x0 ∈ ∏

i∈I X
[i]
0 ,

MCC(T, CC (s,PI), x0) =
1

s
· MCC(T, CC , x0) ,

and therefore, TCC(T, CC (s,PI), x0) = TCC(T, CC , x0), that is, the total com-
munication complexity of CC is invariant under rescheduling.

Remark 3.32 (Appropriate complexity notions for driftless agents).
Given the results in the previous theorem, one should be careful in choosing
which notion of communication complexity to use in order to evaluate control
and communication laws. For driftless physical agents, rather than the
mean communication complexity MCC, one should really consider the total
communication complexity TCC, since the latter is invariant with respect to
rescheduling. Note that the notion of infinite-horizon mean communication
complexity IH-MCC defined in Remark 3.27 satisfies the same relationship
as MCC, that is, IH-MCC(CC (s,PI), x0) = 1

s IH-MCC(CC , x0). •
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3.4 COMPLEXITY OF DIRECTION AGREEMENT AND

EQUIDISTANCE

From Example 3.7, Section 3.1.3, and Example 3.22, recall the definition of
a uniform network Scircle of locally connected first-order agents in S1, the
agree & pursue control and communication law CCagree & pursue, and the
two coordination tasks Tdir and Tε-eqdstnc. In this section, we characterize
the complexity to achieve these coordination tasks with CCagree & pursue.
Because the number of bits required to represent the variable max-id ∈
{1, . . . , n} is log(n), note that the space complexity of CCagree & pursue is
log(n) bits, that is, one basic memory unit in our convention discussed in
Section 3.3.2.

Motivated by Remark 3.8, we model wireless communication congestion
by assuming that the communication range is a monotone non-increasing
function r : N → ]0, π[ of the number of agents n. Likewise, we assume that
the maximum control amplitude umax is a non-increasing function umax :
N → ]0, 1[; recall that umax is the maximum robot speed. Finally, it is
convenient to define the function n 7→ δ(n) = nr(n)−2π ∈ R that compares
the sum of the communication ranges of all the robots with the length of
the unit circle.

We are now ready to state the main result of this section; proofs are
postponed to Section 3.6.2.

Theorem 3.33 (Time complexity of agree-and-pursue law). Given
kprop ∈ ]0, 1

2 [, in the limit as n → +∞ and ε → 0+, the network Scircle

with umax(n) ≥ kpropr(n), the law CCagree & pursue, and the tasks Tdir and
Tε-eqdstnc together satisfy the following properties:

(i) TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1).

(ii) If δ(n) is lower bounded by a positive constant as n→ +∞, then

TC(Tε-eqdstnc, CCagree & pursue) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagree & pursue) ∈ O(n2 log(nε−1)).

If δ(n) is upper bounded by a negative constant, then in general the
law CCagree & pursue does not achieve Tε-eqdstnc.

Next, we study the total communication complexity of the agree-and-
pursue control and communication law. First, we note that any message in
A = S1 ×{cc, c}×{1, . . . , n}∪{null} requires only a finite number of basic
messages to encode, that is, |A|basic ∈ O(1).

Theorem 3.34 (Total communication complexity of agree-and-pur-
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sue law). For kprop ∈ ]0, 1
2 [, in the limit as n → +∞ and ε → 0+, the

network Scircle with umax(n) ≥ kpropr(n), the law CCagree & pursue, and the
tasks Tdir and Tε-eqdstnc together satisfy the following properties:

(i) If δ(n) ≥ π(1/kprop − 2) as n→ +∞, then

TCC(Tdir, CCagree & pursue) ∈ Θ(n2r(n)−1);

otherwise, if δ(n) ≤ π(1/kprop − 2) as n→ +∞, then

TCC(Tdir, CCagree & pursue) ∈ Ω(n3 + nr(n)−1),

TCC(Tdir, CCagree & pursue) ∈ O(n2r(n)−1).

(ii) If δ(n) is lower bounded by a positive constant as n→ +∞, then

TCC(Tε-eqdstnc, CCagree & pursue)∈ Ω(n3δ(n) log(nε)−1),

TCC(Tε-eqdstnc, CCagree & pursue)∈ O(n4 log(nε−1)).

Remark 3.35 (Comparison with leader election). Let us compare
the agree-and-pursue control and communication law with the classical Le
Lann-Chang-Roberts (LCR) algorithm for leader election discussed
in Section 1.5.4. The leader election task consists of electing a unique agent
among all agents in the network; therefore, it is different from, but closely
related to, the coordination task Tdir. The LCR algorithm operates on
a static network with the ring communication topology, and achieves leader
election with time and total communication complexity Θ(n) and Θ(n2),
respectively. The agree-and-pursue law operates on a robotic network with
the r(n)-disk communication topology, and achieves Tdir with time and to-
tal communication complexity, respectively, Θ(r(n)−1) and O(n2r(n)−1). If
wireless communication congestion is modeled by r(n) of order 1/n as in Re-
mark 3.8, then the two algorithms have identical time complexity and the
LCR algorithm has better communication complexity. Note that com-
putations on a possibly disconnected, dynamic network are more complex
than on a static ring topology. •

3.5 NOTES

The study of multi-robot systems has a long and rich history. Some recent
examples include the surveys (Asama, 1992; Cao et al., 1997; Dias et al.,
2006), the text by Arkin (1998) on behavior-based robotics, and the special
issues (Arai et al., 2002; Abdallah and Tanner, 2007; Bullo et al., 2009).
Together with this literature, the starting points for developing the material
in this chapter are the standard notions of synchronous and asynchronous
networks in distributed (Lynch, 1997; Peleg, 2000; Tel, 2001) and paral-
lel (Bertsekas and Tsitsiklis, 1997; Parhami, 1999) computation. The estab-
lished body of knowledge on synchronous networks is, however, not directly
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applicable to the robotic network setting because of the agents’ mobility and
the ensuing dynamic communication topology.

An influential contribution toward a network model of mobile interacting
robots is the work by Suzuki and Yamashita (1999). This model consists of
a group of identical “distributed anonymous mobile robots” characterized as
follows: no explicit communication takes place between them, and at each
time instant of an “activation schedule,” each robot senses the relative posi-
tion of all other robots and moves according to a pre-specified algorithm. An
artificial intelligence approach to multi-agent behavior in a shared environ-
ment is taken in Moses and Tennenholtz (1995). Santoro (2001) provides,
with an emphasis on computer science aspects, a brief survey of models, algo-
rithms, and the need for appropriate complexity notions. Recently, a notion
of communication complexity for control and communication algorithms in
multi-robot systems has been analyzed by Klavins (2003); see also Klavins
and Murray (2004). Notions of failures and robustness in robotic networks
are discussed by Gupta et al. (2006b). From a broad hybrid networked sys-
tems viewpoint, our robotic network model can be regarded as special cases
of the general modeling paradigms discussed in Lygeros et al. (2003), Lynch
et al. (2003), and Sanfelice et al. (2007).

A key feature of the synchronous robotic network model proposed in this
chapter is the adoption of proximity graphs from computational geometry
as a basis for our communication model. This design choice is justified by
the vast wireless networking literature, where this assumption is made. The
simplest communication model, in which two robots communicate only if
they are within a fixed communication range, is a common model adopted,
for example, in the studies by Gupta and Kumar (2000), Li (2003), Lloyd
et al. (2005), and Santi (2005). These works study the proximity graph
solutions to various communication optimization problems; this discipline
is referred to as topology control (cf., Remark 3.8). Although we focus our
presentation on the topological aspect of the communication service, more
realistic communication models would include randomness, packet losses,
coding, quantization, and delays (see, e.g., Toh, 2001; Tse and Viswanath,
2005).

Next, we review some literature on emergent and self-organized swarm-
ing behaviors in biological groups. Interesting dynamical systems arise in
biological networks at multiple levels of resolution, all the way from interac-
tions among molecules and cells (Miller and Bassler, 2001) to the behavioral
ecology of animal groups (Okubo, 1986). Flocks of birds and schools of
fish can travel in formation and act as one (see Parrish et al., 2002), al-
lowing these animals to defend themselves against predators and protect
their territories. Wildebeest and other animals exhibit complex collective
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behaviors when migrating, such as obstacle avoidance, leader election, and
formation-keeping (see Sinclair, 1977; Gueron and Levin, 1993). Certain for-
aging behaviors include individual animals partitioning their environment
into non-overlapping zones (see Barlow, 1974). Honey bees (Seeley and
Buhrman, 1999), gorillas (Stewart and Harcourt, 1994), and whitefaced ca-
puchins (Boinski and Campbell, 1995) exhibit synchronized group activities
such as initiation of motion and change of travel direction. These remark-
able dynamic capabilities are achieved apparently without following a group
leader; see Barlow (1974), Okubo (1986), Gueron and Levin (1993), Stewart
and Harcourt (1994), Seeley and Buhrman (1999), Boinski and Campbell
(1995), and Parrish et al. (2002) for specific examples of animal species,
and Conradt and Roper (2003), and Couzin et al. (2005) for general stud-
ies. A comprehensive exposition of bio-inspired optimization and control
methods is presented in Passino (2004).

Regarding distributed motion coordination algorithms, much progress has
been made on collective pattern formation (Suzuki and Yamashita, 1999;
Belta and Kumar, 2004; Justh and Krishnaprasad, 2004; Sepulchre et al.,
2007; Paley et al., 2007; Yang et al., 2008), flocking (Olfati-Saber, 2006; Lee
and Spong, 2007; Tanner et al., 2007; Moshtagh and Jadbabaie, 2007), mo-
tion feasibility of formations (Tabuada et al., 2005), formation control using
rigidity and persistence theory (Olfati-Saber and Murray, 2002; Baillieul
and Suri, 2003; Hendrickx et al., 2007; Krick, 2007; Yu et al., 2009), forma-
tion stability (Tanner et al., 2004; Lafferriere et al., 2005; Kang et al., 2006;
Dunbar and Murray, 2006; Smith and Hadaegh, 2007; Zheng et al., 2008),
motion camouflage (Justh and Krishnaprasad, 2006), self-assembly (Klavins
et al., 2006), swarm aggregation (Gazi and Passino, 2003), gradient climb-
ing (Ögren et al., 2004; Cortés, 2007), cyclic-pursuit (Bruckstein et al., 1991;
Marshall et al., 2004; Mart́ınez and Bullo, 2006; Smith et al., 2005; Pavone
and Frazzoli, 2007), vehicle routing (Sharma et al., 2007), motion plan-
ning with collision avoidance (Lumelsky and Harinarayan, 1997; Hu et al.,
2007; Pallottino et al., 2007), and cooperative boundary estimation (Bertozzi
et al., 2004; Zhang and Leonard, 2005; Clark and Fierro, 2007; Casbeer et al.,
2006; Susca et al., 2008). It is also worth mentioning works on network lo-
calization, estimation, and tracking (see, e.g., Aspnes et al., 2006; Barooah
and Hespanha, 2007; Oh et al., 2007; and the references therein).

Much research has been devoted to distributed task allocation problems.
The work in (Gerkey and Mataric, 2004) proposes a taxonomy of task alloca-
tion problems. In papers such as (Godwin et al., 2006; Alighanbari and How,
2006; Schumacher et al., 2003; Moore and Passino, 2007; Tang and Özgüner,
2005), advanced heuristic methods are developed, and their effectiveness is
demonstrated through analysis, simulation or real world implementation.
Distributed auction algorithms are discussed in (Castañón and Wu, 2003;
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Moore and Passino, 2007) building on the classic works in (Bertsekas and
Castañón, 1991, 1993). A distributed mixed-integer-linear-programming
solver is proposed in (Alighanbari and How, 2006). A spatially distributed
receding-horizon scheme is proposed in (Frazzoli and Bullo, 2004; Pavone
et al., 2007). There has also been prior work on target assignment prob-
lems (Beard et al., 2002; Arslan et al., 2007; Zavlanos and Pappas, 2007a;
Smith and Bullo, 2009). Target allocation for vehicles with nonholonomic
constraints is studied in (Rathinam et al., 2007; Savla et al., 2008, 2009a).

3.6 PROOFS

This section gathers the proofs of the main results presented in the chapter.

3.6.1 Proof of Proposition 3.31

Proof. Let t 7→ x(t) and t 7→ x̃(t) denote the network evolutions starting

from x0 ∈ ∏

i∈I X
[i]
0 under CC and CC (s,PI), respectively. From the definition

of rescheduling, one can verify that, for all k ∈ Z≥0,

x̃[i](t) =

{

x̃[i](F (k − 1) + 1), for t ∈ ⋃F (k)−1
ℓ=F (k−1)+1[ℓ, ℓ+ 1],

x[i](t− F (k) + k), for t ∈ [F (k), F (k) + 1].
(3.6.1)

By the definition of time complexity TC(T, CC , x0), we have T(x(k)) = true,
for all k ≥ TC(T, CC , x0), and T(x(TC(T, CC , x0)− 1)) = false. We rewrite
these equalities in terms of the trajectories of CC (s,PI). From (3.6.1), we

write x[i](k) = x̃[i](F (k)), for all i ∈ I and k ∈ Z≥0. Therefore, we have

T(x̃(F (k))) = T(x(k)) = true , for all F (k) ≥ F (TC(T, CC , x0)),

T(x̃(F (TC(T, CC , x0) − 1))) = T(x(TC(T, CC , x0) − 1)) = false,

where we have used the rescheduled message-generation function in (3.3.2).
Now, note that by equation (3.6.1), x̃[i](ℓ) = x̃[i](F (⌊ℓ/s⌋ − 1) + 1), for
all ℓ ∈ Z≥0 and all i ∈ I. Therefore, T(x̃(F (TC(T, CC , x0) − 1) + 1)) =
T(x̃(F (TC(T, CC , x0)))) and we can rewrite the previous identities as

T(x̃(k)) = true, for all k ≥ F (TC(T, CC , x0) − 1) + 1,

T(x̃(F (TC(T, CC , x0) − 1))) = false,

which implies TC(T, CC (s,PI), x0) = F (TC(T, CC , x0)−1)+1 = sTC(T, CC , x0).
As for the mean communication complexity, additivity of Crnd implies

Crnd ◦M(ℓ, x(ℓ))

= Crnd ◦M(F (ℓ)− s+1, x̃(F (ℓ)− s+1))+ · · ·+Crnd ◦M(F (ℓ), x̃(F (ℓ))),
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where we have used F (ℓ− 1) + 1 = F (ℓ) − s+ 1. We conclude the proof by
computing

TC(T,CC (s,PI ),x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ)) =

F (TC(T,CC ,x0)−1)
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ))

=

TC(T,CC ,x0)−1
∑

ℓ=0

F (ℓ)
∑

k=F (ℓ)−s+1

Crnd ◦M(k, x̃(k))

=

TC(T,CC ,x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x(ℓ)).

�

3.6.2 Proof of Theorem 3.33

Proof. In the following four STEPS, we prove the two upper bounds and
the two lower bounds.

STEP 1: We start by proving the upper bound in statement (i). We claim
that TC(Tdir, CCagree & pursue) ≤ 2π/(kpropr(n)), and we reason by contra-
diction, that is, we assume that there exists an initial condition which gives
rise to an execution with time complexity strictly larger than 2π/(kpropr(n)).

Without loss of generality, assume dir[n](0) = c. For ℓ ≤ 2π/(kpropr(n)),
define

k(ℓ) = argmin{distcc(θ
[n](0), θ[i](ℓ)) | dir[i](ℓ) = cc, i ∈ {1, . . . , n}}.

In other words, agent k(ℓ) is the agent moving counterclockwise that has
smallest counterclockwise distance from the initial position of agent n. Note
that k(ℓ) is well-defined since, by hypothesis of contradiction, Tdir is false
for ℓ ≤ 2π/(kpropr(n)). According to the state-transition function of the
law CCagree & pursue (cf., Section 3.1.3), messages with dir = cc can only
travel counterclockwise, while messages with dir = c can only travel clock-
wise. Therefore, the position of agent k(ℓ) at time ℓ can only belong to the
counterclockwise interval from the position of agent k(0) at time 0 to the
position of agent n at time 0.

Let us examine how fast the message from agent n travels clockwise. To
this end, for ℓ ≤ 2π/(kpropr(n)), define

j(ℓ) = argmax{distc(θ
[n](0), θ[i](ℓ)) | max-id[i](ℓ) = n, i ∈ {1, . . . , n}}.

In other words, agent j(ℓ) has max-id equal to n, is moving clockwise, and
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is the agent furthest from the initial position of agent n in the clockwise
direction with these two properties. Initially, j(0) = n. Additionally, for
ℓ ≤ 2π/(kpropr(n)), we claim that

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ+ 1)) ≥ kpropr(n).

This happens because either (1) there is no agent clockwise-ahead of θ[j(ℓ)](ℓ)
within clockwise distance r(n), and therefore, the claim is obvious, or (2)
there are such agents. In case (2), let m denote the agent whose clockwise
distance to agent j(ℓ) is maximal within the set of agents with clockwise
distance r(n) from θ[j(ℓ)](ℓ). Then,

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ+ 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ+ 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + distc(θ

[m](ℓ), θ[m](ℓ+ 1))

≥ distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + kprop

(

r(n) − distc(θ
[j(ℓ)](ℓ), θ[m](ℓ))

)

= kpropr(n) + (1 − kprop) distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) ≥ kpropr(n),

where the first inequality follows from the fact that at time ℓ there can
be no agent whose clockwise distance to agent m is less than (r(n) −
distc(θ

[j(ℓ)](ℓ), θ[m](ℓ))). Therefore, after a number of communication rounds
larger than 2π/(kpropr(n)), the message with max-id = n has traveled the
whole circle in the clockwise direction, and must therefore have reached
agent k(ℓ). This is a contradiction.

STEP 2: We prove the lower bound in statement (i). If r(n) > π for all
n, then 1/r(n) < 1/π, and the upper bound is TC(Tdir, CCagree & pursue) ∈
O(1). Obviously, the time complexity of any evolution with an initial con-
figuration where dir[i](0) = cc for i ∈ {1, . . . , n − 1}, dir[n](0) = c, and
EGdisk(r)(θ

[1](0), . . . , θ[n](0)) is the complete graph, is lower bounded by 1.
Therefore, TC(Tdir, CCagree & pursue) ∈ Ω(1). If r(n) > π for all n, then
we conclude TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1). Assume now that
r(n) ≤ π for sufficiently large n. Consider an initial configuration where
dir[i](0) = cc for i ∈ {1, . . . , n − 1}, dir[n](0) = c, and the agents are
placed as depicted in Figure 3.10. Note that, after each communication
round, agent 1 has moved kpropr(n) in the counterclockwise direction, while
agent n has moved kpropr(n) in the clockwise direction. These two agents
keep moving at full speed toward each other until they become neighbors at
a time lower bounded by

2π − r(n)

2kpropr(n)
>

π

kpropr(n)
− 1.

We conclude that TC(Tdir, CCagree & pursue) ∈ Ω(r(n)−1).
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N

N − 1

1

Figure 3.10 Initial condition for the lower bound of TC(Tdir, CCagree & pursue), with 0 <
distc(θ

[n−1](0), θ[n](0)) − r(n) < ε and distc(θ
[1](0), θ[n−1](0)) ≤ r(n) − ε, for

some fixed ε > 0.

STEP 3: We now prove the upper bound in (ii). We begin by noting
that the lower bound on δ implies r(n)−1 ∈ O(n). Therefore, we know that
TC(Tdir, CCagree & pursue) belongs to O(n) and is negligible as compared
with the claimed upper bound estimates for TC(Tε-eqdstnc, CCagree & pursue).
In what follows, we therefore assume that Tdir has been achieved and that,
without loss of generality, all agents are moving clockwise. We now prove a
fact regarding connectivity. At time ℓ ∈ Z≥0, let H(ℓ) be the union of all
the empty “circular segments” of length at least r(n), that is, let

H(ℓ) = {x ∈ S1 | min
i∈{1,...,n}

distc(x, θ
[i](ℓ)) + min

j∈{1,...,n}
distcc(x, θ

[j](ℓ)) > r(n)}.

In other words, H(ℓ) does not contain any point between two agents sepa-
rated by a distance less than r(n), and each connected component of H(ℓ)
has length at least r(n). Let nH(ℓ) be the number of connected components
of H(ℓ); if H(ℓ) is empty, then we take the convention that nH(ℓ) = 0.
Clearly, nH(ℓ) ≤ n. We claim that if nH(ℓ) > 0, then τ 7→ nH(ℓ+ τ) is non-
increasing. Let d(ℓ) < r(n) be the distance between any two consecutive
agents at time ℓ. Because both agents move in the same direction, a simple
calculation shows that

d(ℓ+ 1) ≤ d(ℓ) + kprop(r − d(ℓ)) = (1 − kprop)d(ℓ) + kpropr(n)

< (1 − kprop)r + kpropr(n) = r(n).

This means that the two agents remain within distance r(n) and, therefore,
connected at the following time instant. Because the number of connected
components of EGdisk(r)(θ

[1], . . . , θ[n]) does not increase, it follows that the
number of connected components of H cannot increase. Next, we claim
that if nH(ℓ) > 0, then there exists τ > ℓ such that nH(τ) < nH(ℓ). By
contradiction, assume that nH(ℓ) = nH(τ) for all τ ≥ ℓ. Without loss
of generality, let {1, . . . ,m} be a set of agents with the properties that
distcc

(

θ[i](ℓ), θ[i+1](ℓ)
)

≤ r(n), for i ∈ {1, . . . ,m}, that θ[1](ℓ) and θ[m](ℓ)
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belong to the boundary of H(ℓ), and that there is no other set with the
same properties and more agents. (Note that this implies that the agents
1, . . . ,m are in counterclockwise order.) One can show that, for τ ≥ ℓ,

θ[1](τ + 1) = θ[1](τ) − kpropr(n),

θ[i](τ + 1) = θ[i](τ) − kprop distc(θ
[i](τ), θ[i−1](τ)),

for i ∈ {2, . . . ,m}. If we consider the inter-agent distances

d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . ,distcc(θ

[m−1](τ), θ[m](τ))
)

∈ Rm−1
>0 ,

then the previous equations can be rewritten as

d(τ + 1) = Tridm−1(kprop, 1 − kprop, 0) d(τ) + r(n)kprope1,

where the linear map (a, b, c) 7→ Tridm−1(a, b, c) ∈ R(m−1)×(m−1) is defined
in Section 1.6.4. This is a discrete-time affine time-invariant dynamical
system with unique equilibrium point r(n)1m−1. By construction, the initial
condition of this system satisfies ‖d(0) − r(n)1m−1‖2 ≤ r(n)

√
m− 1. By

Theorem 1.79(ii) in Section 1.6.4, for η1 ∈ ]0, 1[, the solution τ 7→ d(τ) to this
system reaches a ball of radius η1 centered at the equilibrium point in time
O(m logm+ log η−1

1 ). (Here we have used the fact that the initial condition
of this system is bounded.) In turn, this implies that τ 7→ ∑m

i=1 di(τ) is
larger than (m − 1)(r(n) − η1) in time O(m logm + log η−1

1 ). We are now
ready to find the contradiction, and show that nH(τ) cannot remain equal to
nH(ℓ) for all time τ . After time O(m logm+log η−1

1 ) = O(n logn+log η−1
1 ),

we have

2π ≥ nH(ℓ)r(n) +

nH(ℓ)
∑

j=1

(r(n) − η1)(mj − 1)

= nH(ℓ)r(n) + (n− nH(ℓ))(r(n) − η1) = nH(ℓ)η1 + n(r(n) − η1).

Here, m1, . . . ,mnH(ℓ) are the numbers of agents in each isolated group, and
each connected component of H(ℓ) has length at least r(n). Now, take
η1 = (nr(n) − 2π)n−1 = δ(n)n−1, and the contradiction follows from

2π ≥ nH(ℓ)η1 + nr(n) − nη1

= nH(ℓ)η1 + nr(n) + 2π − nr(n) = nH(ℓ)η1 + 2π.

In summary, this shows that the number of connected components of H(ℓ)
decreases by one in time O(n logn + log η−1

1 ) = O(n logn + log(nδ(n)−1)).
Note that δ being lower bounded implies that nδ(n)−1 = O(n) and, there-
fore, O(n logn + log(nδ(n)−1)) = O(n logn). Iterating this argument n
times, in time O(n2 log n) the set H will become empty. At that time, the
resulting network will obey the discrete-time linear time-invariant dynamical
system

d(τ + 1) = Circn(kprop, 1 − kprop, 0) d(τ), (3.6.2)
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where the linear map (a, b, c) 7→ Circn(a, b, c) ∈ Rn×n is defined in Sec-
tion 1.6.4 and where d : Z≥0 → Rn

>0 is defined by

d(τ) =
(

distcc(θ
[1](τ), θ[2](τ)), . . . ,distcc(θ

[n](τ), θ[n+1](τ))
)

,

with the convention θ[n+1] = θ[1]. By Theorem 1.79(iii) in Section 1.6.4,
in time O

(

n2 log ε−1
)

, the error 2-norm satisfies the contraction inequality

‖d(τ) − d∗
∥

∥

2
≤ ε‖d(0) − d∗‖2, for d∗ = 2π

n 1n. We convert this inequality on
2-norms into an appropriate inequality on ∞-norms as follows. Note that

‖d(0) − d∗‖∞ = maxi∈{1,...,n} |d[i](0) − d
[i]
∗ | ≤ 2π. For η2 ∈ ]0, 1[ and for τ of

order n2 log η−1
2 ,

‖d(τ) − d∗‖∞ ≤ ‖d(τ) − d∗‖2 ≤ η2‖d(0) − d∗‖2

≤ η2

√
n‖d(0) − d∗‖∞ ≤ η22π

√
n.

This means that the desired configuration is achieved for η22π
√
n = ε, that

is, in time O(n2 log η−1
2 ) = O(n2 log(nε−1)). In summary, the equidistance

task is achieved in time O(n2 log(nε−1)).

STEP 4: Finally, we prove the lower bound in (ii). As we reasoned
before, TC(Tdir, CCagree & pursue) is negligible as compared with the claimed
lower bound estimate for TC(Tε-eqdstnc, CCagree & pursue) and, therefore, we
assume that Tdir has been achieved. We consider an initial configuration
with the properties that: (i) agents are counterclockwise-ordered according
to their unique identifier; (ii) the set H(0) is empty; and (iii) the inter-agent
distances d(0) =

(

distcc(θ
[1](0), θ[2](0)), . . . ,distcc(θ

[n](0), θ[1](0))
)

are

d(0) =
2π

n
1n +

π − ε′

n
(vn + vn),

where ε′ ∈ ]π, 0[ and where vn is the eigenvector of Circn(kprop, 1− kprop, 0)
corresponding to the eigenvalue 1−kprop+kprop cos

(

2π
n

)

−kprop

√
−1 sin

(

2π
n

)

(see Section 1.6.4). Straightforward calculations show the equality vn+vn =
2(1, cos(2π/n), . . . , cos((n− 1)2π/n)) and that ‖vn + vn‖2 =

√
2n. In turn,

this implies that d(0) ∈ Rn
>0 and that ‖d(0) − 2π

n 1n‖2 ∈ O(1/
√
n). Take

η3 ∈ ]0, 1[. The argument described in the proof of Theorem 1.79(iii) leads
to the following statement: the 2-norm of the difference between ℓ 7→ d(ℓ)
and the desired configuration 2π

n 1n decreases by a factor η3 in time of order

n2 log η−1
3 . Given an initial error of order O(1/

√
n) and a final desired error

of order ε, we set η3 = ε
√
n and obtain the desired result that it takes time

of order n2 log(nε)−1 to reduce the 2-norm error and, therefore, the ∞-norm
error to size ε. This concludes the proof. �
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3.6.3 Proof of Theorem 3.34

Proof. Note that the number of edges in Scircle is at most O(n2), as it is
possible that all robots are within distance r(n) of each other. The upper
bounds in (i) and (ii) then follow from inequality (3.3.1) and Theorem 3.33.
To prove the lower bounds, we follow the steps and notation in the proof
of Theorem 3.33. Regarding the lower bounds in (i), we examine the evolu-
tion of the initial configuration depicted in Figure 3.10. From STEP 2: in
the proof of Theorem 3.33, recall that the time it takes agent 1 to receive
the message with max-id = n is lower bounded by π/(kpropr(n)) − 1. Our
proof strategy is to lower bound the number of edges in the graph until this
event happens. Note that, at initial time, there are (n − 1)2 edges in the
communication graph of the network and, therefore, (n − 1)2 messages get
transmitted. At the next communication round, agent 1 has moved kpropr(n)
counterclockwise and, therefore, the number of edges is lower bounded by
(n− 2)2. Iterating this reasoning, we see that after i < π/(kpropr(n)) com-
munication rounds, the number of edges is lower bounded by (n− i)2. Now,
if δ(n) > π(1/kprop − 2), then n > π/kpropr(n)), and therefore, the total
communication complexity is lower bounded by

π

kpropr(n)
∑

i=1

(n− i)2 ∈ Ω(n2r(n)−1).

On the other hand, if δ(n) < π(1/kprop−2), then n < π/kpropr(n)), and after
n time steps, we lower bound the number of edges in the communication
graph by the number of edges in a chain of length n, that is, n−1. Therefore,
the total communication complexity is lower bounded by

n
∑

i=1

(n− i)2 + (n− 1)
( π

kpropr(n)
− n

)

∈ Ω(n3 + nr(n)−1).

The two lower bounds match when δ(n) = π(1/kprop − 2).

Regarding the lower bound in (ii), we consider first the case when nH(0) =
0. In this case, the network obeys the discrete-time linear time-invariant dy-
namical system (3.6.2). Consider the initial condition d(0) that we adopted
for STEP 4:. We know it takes time of order n2 log(nε)−1 for the appro-
priate contraction property to hold. At d(0), the maximal inter-agent dis-
tance is (4π − ε′)/n and it decreases during the evolution. Because each
robot can communicate with any other robot within a distance r(n), the
number of agents within communication range of a given agent is of order
r(n)n/(4π − ε′), that is, of order δ(n). From here, we deduce that the total
communication complexity belongs to Ω(n3δ(n) log(nε)−1). �
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3.7 EXERCISES

E3.1 (Orientation dynamics). We review some basic kinematic concepts about ori-
entation dynamics, (see, e.g., Bullo and Lewis, 2004; Spong et al., 2006. Define
the set of skew-symmetric matrices in Rd×d as

so(d) = {S ∈ R
d×d | S = −ST }.

Let × denote the cross-product on R3 and define the linear map b· : R3 → so(3) by
bxy = x × y for all y ∈ R3.

(i) Show that, if x = (x1, x2, x3), then:

bx =

2
4

0 −x3 x2

x3 0 −x1

−x2 x1 0

3
5 .

(ii) Given a differentiable curve R : [0, T ] → SO(3), show that there exists a
curve ω : [0, T ] → R3 such that

Ṙ(t) = R(t)bω(t).

These two results lead to a motion model of a relative sensing network with
time-varying orientation. Generalizing the constant-orientation model in equa-
tion (3.2.2), the complete position and orientation dynamics may be written as

ṗ
[i]
fixed(t) = R

[i]
fixed(t) u

[i]
i ,

Ṙ
[i]
fixed(t) = R

[i]
fixed(t) bω[i]

i ,

where, for i ∈ {1, . . . , n}, u
[i]
i and ω

[i]
i are the linear and the body angular velocities

of robot i, respectively.

E3.2 (Variation of the agree & pursue control and communication law). Con-
sider the agree & pursue control and communication law defined in Section 3.1.3,
with the state transition function replaced by the following:

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

The only difference between this law and the agree & pursue law in Sec-
tion 3.1.3 is that, in each communication round, each agent picks the message
with the largest value of max-id among all messages received (instead of among
the messages received only from agents moving towards its position). We refer to
this law as mod-agree & pursue.

Consider the direction agreement task Tdir : (S1)n × W n → {true, false}
defined in Example 3.22. Assume that dir

[n](0) = c, and let k ∈ {1, . . . , n − 1}
be the largest identity such that dir

[k](0) = cc. Do the following tasks:

(i) Show that if the message from agent k gets delivered to agents clockwise-
placed with respect to agent k along two consecutive communication
rounds, then the message from agent k has traveled at least (1−kprop)r(n)
along the circle in the clockwise direction.
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(ii) Show that, if distcc(θ
[n](0), θ[k](0)) < 2 r(n), then

TC(Tdir, CC mod-agree & pursue, x0, w0) = Θ(r(n)−1).

(iii) Implement the algorithm in your favorite simulation software (for ex-
ample, Mathematica c© Matlab c© or Maple c©), and compute the time
complexity of multiple executions of the algorithm starting from different
initial conditions. Does your simulation analysis support the conjecture
that

TC(Tdir, CC mod-agree & pursue) = Θ(r(n)−1)?

For the simulation analysis to be relevant, you should use a large number
of randomly generated initial physical positions and processor states.

E3.3 (Leader-following flocking). Consider a group of robots moving in R2 accord-
ing to the following discrete-time version of the planar vehicle dynamics introduced
in Example 3.1:

x(ℓ + 1) = x(ℓ) + v cos(θ(ℓ)),

y(ℓ + 1) = y(ℓ) + v sin(θ(ℓ)),

θ(ℓ + 1) = θ(ℓ) + ω.

We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical states, where p[i] =
(x[i], y[i]) ∈ R2 corresponds to the position and θ[i] ∈ [0, 2π) corresponds to the
orientation of the robot i ∈ I. As communication graph, we adopt the r-disk
graph Gdisk(r) introduced in Section 2.2.

Assume that all agents move at unit speed, v = 1, and update their heading
according to the leader-following version of Vicsek’s model (see equation (1.6.5)):

θ[1](ℓ + 1) = θ[1](ℓ), (E3.1)

θ[i](ℓ + 1) = avrg
“
{θ[i](ℓ)}∪{θ[j](ℓ) | j s.t. ‖p[j](ℓ) − p[i](ℓ)‖2 ≤ r}

”
,

for i ∈ {2, . . . , n}. Do the following tasks:

(i) Write the algorithm formally as a control and communication law as
defined in Section 3.1.2.

(ii) Given initial conditions for the position and orientation of the robots,
express (E3.1) as the time-dependent linear iteration associated to a se-
quence of matrices {F (ℓ) | ℓ ∈ Z≥0}. Are these matrices stochastic? Are
they symmetric? Is the sequence non-degenerate?

(iii) We loosely define the flocking task as achieving agreement on the heading
of the agents. Using Theorem 1.63, identify connectivity conditions on
the sequence of graphs determined by the evolution of the network that
guarantee that agents achieve flocking. What is the final orientation in
which the network flocks?
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Chapter Four

Connectivity maintenance and rendezvous

The aims of this chapter are twofold. First, we introduce the rendezvous
problem and analyze various coordination algorithms that achieve it, provid-
ing upper and lower bounds on their time complexity. Second, we introduce
the problem of maintaining connectivity among a group of mobile robots
and use geometric approaches to preserve this topological property of the
network.

Loosely speaking, the rendezvous objective is to achieve agreement over the
physical location of as many robots as possible, that is, to steer the robots
to a common location. This objective is to be achieved with the limited
information flow described in the model of the network. Typically, it will
be impossible to solve the rendezvous problem for all robots if the robots
are placed in such a way that they do not form a connected communication
graph. Therefore, it is reasonable to assume that the network is connected at
initial time, and that a good property of any rendezvous algorithm is that
of maintaining some form of connectivity among robots. This discussion
motivates the connectivity maintenance problem. Once a model for when two
robots can acquire each other’s relative position is adopted, this problem is
of particular relevance, as the inter-robot topology depends on the physical
states of the robots. Our exposition here is mainly based on Ando et al.
(1999), Cortés et al. (2006), and Ganguli et al. (2009).

The chapter is organized as follows. In the first section, we formally
introduce the two coordination problems. In the second section, we de-
fine various connectivity constraint sets to limit the motion of robots in
order to maintain network connectivity. These notions of constraint sets
allows us to study in the next section various rendezvous algorithms with
connectivity maintenance properties. We study numerous variations of the
circumcenter algorithm for the rendezvous objective and we characterize its
complexity. Additionally, we introduce the perimeter-minimizing algorithm
for nonconvex environments. The fourth section presents various simula-
tions of the proposed motion-coordination algorithms. We end the chapter
with three sections on, respectively, bibliographic notes, proofs of the results
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presented in the chapter, and exercises. Our technical treatment is based
on the LaSalle Invariance Principle, on linear distributed algorithms, and
on geometric tools such as proximity graphs and robust visibility.

4.1 PROBLEM STATEMENT

We begin this section by reviewing the classes of networks and the types of
problems that will be considered in the chapter.

4.1.1 Networks with discrete-time motion

In the course of the chapter, we will consider the robotic networks Sdisk, SLD,
and S∞-disk, and the relative-sensing networks Srs

disk and Srs
vis-disk presented

in Example 3.4 and in Section 3.2.2.

For the robotic networks Sdisk, SLD, and S∞-disk, we will, however, assume
that the robots move in discrete time, that is, we adopt the discrete-time
motion model

p[i](ℓ+ 1) = p[i](ℓ) + u[i](ℓ), i ∈ {1, . . . , n}. (4.1.1)

Similarly, for the relative-sensing networks Srs
disk and Srs

vis-disk, we adopt the
discrete-time motion model

p
[i]
fixed(ℓ+ 1) = p

[i]
fixed(ℓ) +R

[i]
fixedu

[i]
i (ℓ), i ∈ {1, . . . , n}. (4.1.2)

As an aside, if we express the previous equation with respect to frame i at
time t, then equation (4.1.2) reads

p
[i]
(frame i at time ℓ)(ℓ+ 1) = u

[i]
(frame i at time ℓ)(ℓ), i ∈ {1, . . . , n}.

We present the treatment in discrete time for simplicity. It is easy to show
that any control law for the discrete-time motion model can be implemented
in the continuous-time networks. In what follows, we begin our discussion
by assuming no bound on the control magnitude and we later introduce an
upper bound denoted by umax.

4.1.2 The rendezvous task

Next, we discuss the rendezvous problem. There are different ways of formu-
lating this objective in terms of task maps. Let S = ({1, . . . , n},R, Ecmm)
be a uniform robotic network. The (exact) rendezvous task Trndzvs : Xn →
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{true, false} for S is the coordination task defined by

Trndzvs(x
[1], . . . , x[n])

=

{

true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise.

Next, assume that, for the same network S = ({1, . . . , n},R, Ecmm), the
robots’ physical state space is X ⊂ Rd. It is convenient to review some
basic notation consistent with what we adopted in Chapter 2. We let P =
{p[1], . . . , p[n]} denote the set of agents’ location in X ⊂ Rd and we let P be
an array of n points in Rd. Furthermore, we let avrg denote the average of
a finite point set in Rd, that is,

avrg({q1, . . . , qk}) =
1

k
(q1 + · · · + qk).

For ε ∈ R>0, the ε-rendezvous task Tε-rndzvs : (Rd)n → {true, false} for S
is defined as follows: Tε-rndzvs is true at P if and only if each robot position
p[i], for i ∈ {1, . . . , n}, is at distance less than ε from the average position of
its Ecmm-neighbors. Formally,

Tε-rndzvs(P ) = true

⇐⇒ ‖p[i] − avrg
(

{p[j] | (i, j) ∈ Ecmm(P )}
)

‖2 < ε, i ∈ {1, . . . , n}.

4.1.3 The connectivity maintenance problem

Assume that the communication graph, computed as a function of the robot
positions, is connected: How should the robots move in such a way that their
communication graph is again connected? Clearly, the problem depends
upon: (1) how the robots move; and (2) what proximity graph describes
the communication graph or, in the case of relative-sensing networks, what
sensor model is available on each robot.

The key idea is to restrict the allowable motion of each agent. Different
motion constraint sets correspond to different communication or sensing
graphs. We have three objectives in doing so. First, we aim to achieve this
objective only based on local measurements or 1-hop communication, that
is, without introducing processor states explicitly dedicated to this task.
Second, the constraint sets should depend continuously on the position of
the robots. Third, we have the somehow informal objective to design the
constraint sets as “large” as possible so as to minimally constrain the motion
of the robots.
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4.2 CONNECTIVITY MAINTENANCE ALGORITHMS

In this section, we present some algorithms that might be used by a robotic
network to maintain communication connectivity. The results presented in
this section start with the original idea introduced by Ando et al. (1999) for
first-order robots communicating along the edges of a disk graph, that is,
for the network described in Example 3.4. This idea is then generalized to
a number of useful settings. The properties of proximity graphs presented
in Section 2.2 play a key role in formulating and solving the connectivity
problem.

4.2.1 Enforcing range-limited links

First, we aim to constrain the motion of two first-order agents in order to
maintain a communication link between them. We assume that the commu-
nication takes place over the disk graph Gdisk(r) with communication range
r > 0.

Loosely stated, the pairwise connectivity maintenance problem is as fol-
lows: given two neighbors in the proximity graph Gdisk(r), find a rich set of
control inputs for both agents with the property that, after moving, both
agents are again within distance r. We provide a solution to this problem
as follows.

Definition 4.1 (Pairwise connectivity constraint set). Consider two
agents i and j at positions p[i] ∈ Rd and p[j] ∈ Rd such that ‖p[i]−p[j]‖2 ≤ r.
The connectivity constraint set of agent i with respect to agent j is

Xdisk

(

p[i], p[j]
)

= B
(p[j] + p[i]

2
,
r

2

)

. •

Note that both robots, i and j, can independently compute their respec-
tive connectivity constraint sets. The proof of the following result is straight-
forward.

Lemma 4.2 (Maintaining pairwise connectivity). Assume that the
distance between agents p[i] and p[j] is no more than r, at some time ℓ. If
the control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk

(

p[i](ℓ), p[j](ℓ)
)

− p[i](ℓ) = B
(p[j](ℓ) − p[i](ℓ)

2
,
r

2

)

,

and, similarly, u[j](ℓ) ∈ Xdisk

(

p[j](ℓ), p[i](ℓ)
)

− p[j](ℓ), then, according to the
discrete-time motion model (4.1.1):
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(i) the positions of both agents at time ℓ+ 1 are inside the connectivity

constraint set Xdisk

(

p[i](ℓ), p[j](ℓ)
)

; and

(ii) the distance between the agents’ positions at time ℓ + 1 is no more
than r.

We illustrate these pairwise connectivity maintenance concepts in Fig-
ure 4.1.

Σfixed

Σ[i]

Σ[j]

Figure 4.1 An illustration of the connectivity maintenance constraint. Starting from po-
sitions p[i] and p[j], the robots are restricted to moving inside the disk centered
at Xdisk(p

[i], p[j]) = 1
2

`
p[i] + p[j]

´
with radius r

2
.

Remark 4.3 (Constraints for relative-sensing networks). Let us con-
sider a relative-sensing network with a disk sensor of radius r (see Exam-
ple 3.15). Recall the following facts about this model. First, agent i mea-
sures the position of robot j in its frame Σ[i], that is, robot i measures

p
[j]
i . Second, p

[i]
i = 0d. Third, if W ⊂ Rd, then Wi denotes its expression

in the frame Σ[i]. Combining these notions and assuming that the inter-
agent distance is no more than r, the pairwise connectivity constraint set in
Definition 4.1 satisfies

(

Xdisk(p
[i], p[j])

)

i
= Xdisk

(

0d, p
[j]
i

)

= B
(p

[j]
i

2
,
r

2

)

. •

4.2.2 Enforcing network connectivity

Here, we focus on how to constrain the mobility of multiple agents in order
to maintain connectivity for the entire network that they form. We again
consider the case of first-order agents moving according to the discrete-time
equation (4.1.1) and communicating over Gdisk(r).
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Loosely stated, the network connectivity maintenance problem is as fol-
lows: Given n agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} in which they
form a connected r-disk graph Gdisk(r), the objective is to find a rich set
of control inputs for all agents with the property that, at time ℓ + 1, the
agents’ new positions P(ℓ+1) again form a connected r-disk graph Gdisk(r).
We provide a simple, but potentially conservative, solution to this problem
as follows.

Definition 4.4 (Connectivity constraint set for groups of agents).
Consider a group of agents at positions P = {p[1], . . . , p[n]} ⊂ Rd. The
connectivity constraint set of agent i with respect to P is

Xdisk(p
[i],P) =

{

x ∈ Xdisk(p
[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r

}

. •

In other words, if q1, . . . , ql are agents’ positions whose distance from p[i]

is no more than r, then the connectivity constraint set for agent i is the
intersection of the constraint sets B

(

1
2(qk + p[i]), r

2

)

for k ∈ {1, . . . , l} (see
Figure 4.2).

Figure 4.2 An illustration of network connectivity maintenance. The connectivity Xdisk-
constraint set of the white-colored agent is the intersection of the individual
constraint sets determined by its neighbors.

The following result is a consequence of Lemma 4.2.

Lemma 4.5 (Maintaining network connectivity). Consider a group
of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Rd at time ℓ. If each
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agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk

(

p[i](ℓ),P(ℓ)
)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its connectivity constraint set, that is, p[i](ℓ+
1) ∈ Xdisk(p

[i](ℓ),P(ℓ));

(ii) each edge of Gdisk(r) at P(ℓ) is maintained after the motion step,
that is, if ‖p[i](ℓ)−p[j](ℓ)‖2 ≤ r, then also ‖p[i](ℓ+1)−p[j](ℓ+1)‖2 ≤
r;

(iii) if Gdisk(r) at time ℓ is connected, then Gdisk(r) at time ℓ + 1 is
connected; and

(iv) the number of connected components of the graph Gdisk(r) at time
ℓ+1 is equal to or smaller than the number of connected components
of the graph Gdisk(r) at time ℓ.

Remark 4.6 (Constraints for relative-sensing networks: cont’d).
Following up on Remark 4.3, the connectivity constraint set in Definition 4.4,
written in the frame Σ[i], is

Xdisk(0d, {p[1]
i , . . . , p

[n]
i })

=
{

x ∈ B
(p

[j]
i

2
,
r

2

)

∣

∣ j 6= i such that ‖p[j] − p[i]‖2 ≤ r
}

. •

Next, we relax the constraints in Definition 4.4 to provide the network
nodes with larger, and therefore less conservative, motion-constraint sets.
Recall from Section 2.2 the relative neighborhood graph GRN, the Gabriel
graph GG, and the r-limited Delaunay graph GLD(r). These proximity graphs
are illustrated in Figure 2.8. From Theorem 2.8 and Proposition 2.9, respec-
tively, recall that the proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and
GLD(r) have the following properties:

(i) they have the same connected components as Gdisk(r), that is, for all
point sets P ⊂ Rd, all graphs have the same number of connected
components consisting of the same vertices; and

(ii) they are spatially distributed over Gdisk(r).

These mathematical facts have two implications. First, to maintain or de-
crease the number of connected components of a disk graph, it is sufficient
to maintain or decrease the number of connected components of any of the
three proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r). Because
each of these graphs is more sparse than the disk graph, that is, they are
subgraphs of Gdisk(r), fewer connectivity constraints need to be imposed.
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Second, because these proximity graphs are spatially distributed over the
disk graph, it is possible for each agent to determine which of its neigh-
bors in Gdisk(r) are also its neighbors in these subgraphs. We formalize this
discussion as follows.

Definition 4.7 (G-connectivity constraint set). Let G be a proxim-
ity graph that is spatially distributed over Gdisk(r) and that has the same
connected components as Gdisk(r). Consider a group of agents at positions
P = {p[1], . . . , p[n]} ⊂ Rd. The G-connectivity constraint set of agent i with
respect to P is

Xdisk,G(p[i],P)

=
{

x ∈ Xdisk(p
[i], q) | q ∈ P s.t. (q, p[i]) is an edge of G(P)

}

. •

Lemma 4.8 (Maintaining connectivity of sparser networks). Let G
be a proximity graph that is spatially distributed over Gdisk(r) and that has
the same connected components as Gdisk(r). Consider a group of agents at
positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Rd at time ℓ. If each agent’s control
u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk,G
(

p[i](ℓ),P(ℓ)
)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its G-connectivity constraint set;

(ii) two agents that are in the same connected component of G remain
at the same connected component after the motion step; and

(iii) the number of connected components of the graph G at P(ℓ + 1) is
equal to or smaller than the number of connected components of the
graph G at P(ℓ).

The reader is asked to provide a proof of this result in Exercise E4.1.

4.2.3 Enforcing range-limited line-of-sight links and network connectivity

Here, we consider the connectivity maintenance problem for a group of
agents with range-limited line-of-sight communication, as described in Ex-
ample 3.6. It is convenient to treat directly and only the case of a com-
pact allowable nonconvex environment Q ⊂ R2 contracted into Qδ = {q ∈
Q | dist(q, ∂Q) ≥ δ} for a small positive δ. We present a solution based on
designing constraint sets that guarantee that every edge of the range-limited
visibility graph Gvis-disk,Qδ

is preserved.
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pj

pi

(a)

p[j]
p[i]

(b)

Figure 4.3 Image (a) shows the set Vidisk(p
[i]; Qδ)∩B( 1

2
(p[i] + p[j]), r

2
). Image (b) illus-

trates the execution of the iterated truncation algorithm. Robots i and
j are constrained to remain inside the shaded region in (b), which is a convex
subset of Qδ and of the closed ball with center 1

2
(p[i] + p[j]) and radius r

2
.

We begin with a useful observation and a corresponding geometric algo-
rithm. Assume that, at time ℓ, robot j is inside the range-limited visibility
set from p[i] in Qδ, that is, with the notation of Section 2.1.2,

p[j](ℓ) ∈ Vidisk(p
[i](ℓ);Qδ) = Vi(p[i](ℓ);Qδ)∩B(p[i](ℓ), r).

This property holds also at time ℓ+ 1 if ‖p[i](ℓ+ 1) − p[j](ℓ+ 1)‖2 ≤ r and
[p[i](ℓ+ 1), p[j](ℓ+ 1)] ⊂ Qδ. A sufficient condition is therefore that

p[i](ℓ+ 1), p[j](ℓ+ 1) ∈ X ,
for some convex subset X of Qδ ∩B

(

1
2(p[i](ℓ)+p[j](ℓ)), r

2

)

. Intuitively speak-
ing, X plays the role of X -constraint set for the proximity graph Gvis-disk,Qδ

.

The following geometric algorithm, given the positions p[i] and p[j] in an
environment Qδ, computes precisely one such convex subset:

function iterated truncation(p[i], p[j];Qδ)
% Executed by robot i at position p[i] assuming that robot j is at position
p[j] within range-limited line of sight of p[i]

1: Xtemp := Vidisk(p
[i];Qδ)∩B

(

1
2(p[i] + p[j]), r

2

)

2: while ∂Xtemp contains a concavity do

3: v := a strictly concave point of ∂Xtemp closest to [p[i], p[j]]
4: Xtemp := Xtemp ∩HQδ

(v)
5: return Xtemp

Note: in step 3: multiple points belonging to distinct concavities may
satisfy the required property. If so, v may be chosen as any of them.

Figure 4.3 illustrates an example convex constraint set computed by the
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iterated truncation algorithm. Figure 4.4 illustrates the step-by-step
execution required to generate Figure 4.3(b).

vpj

pi

pj

pi

v

pj

pi

v

v

pj

pi

Figure 4.4 From left to right, a sample run of the iterated truncation algorithm.
The set Xtemp := Vidisk(p

[i]; Qδ)∩B( 1
2
(p[i] +p[j]), r

2
) is shown in Figure 4.3(a).

The lightly and darkly shaded regions together represent Xtemp at the current
iteration. The darkly shaded region represents Xtemp ∩HQδ

(v), where v is as
described in step 3:. The outcome of the execution is shown in Figure 4.3(b).

Next, we characterize the main properties of the iterated truncation
algorithm. It is convenient to define the set

J = {(p, q) ∈ Qδ ×Qδ | [p, q] ∈ Qδ and ‖p− q‖2 ≤ r}.

Proposition 4.9 (Properties of the iterated truncation algorithm).
Consider the δ-contraction of a compact allowable environment Qδ with κ
strict concavities, and let (p[i], p[j]) ∈ J . The following statements hold:

(i) The iterated truncation algorithm, invoked with arguments
(p[i], p[j];Qδ), terminates in at most κ steps; denote its output by
Xvis-disk(p

[i], p[j];Qδ).

(ii) Xvis-disk(p
[i], p[j];Qδ) is nonempty, compact and convex.

(iii) Xvis-disk(p
[i], p[j];Qδ) = Xvis-disk(p

[j], p[i];Qδ).

(iv) The set-valued map (p, q) 7→ Xvis-disk(p, q;Qδ) is closed at J .

In the interest of brevity, we do not include the proof here and instead
refer the reader to Ganguli et al. (2009). We just mention that fact (iii) is
a consequence of the fact that all relevant concavities in the computation of
Xvis-disk(p

[i], p[j];Qδ) are visible from both agents p[i] and p[j]. We are finally
ready to provide analogs of Definition 4.4 and Lemma 4.5.

Definition 4.10 (Line-of-sight connectivity constraint set). Consider
a nonconvex allowable environment Qδ and two agents i and j within range-
limited line of sight. We call Xvis-disk(p

[i], p[j];Qδ) the pairwise line-of-sight
connectivity constraint set of agent i with respect to agent j. Furthermore,
given agents at positions P = {p[1], . . . , p[n]} ⊂ Qδ that are all within range-
limited line of sight of agent i, the line-of-sight connectivity constraint sets
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of agent i with respect to P is

Xvis-disk(p
[i],P;Qδ) =

{

x ∈ Xvis-disk(p
[i], q;Qδ) | q ∈ P \ {p[i]}

}

. •

The following result is a consequence of Proposition 4.9.

Lemma 4.11 (Maintaining network line-of-sight connectivity). Con-
sider a group of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time
ℓ. If each agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xvis-disk

(

p[i](ℓ),P(ℓ);Qδ

)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its constraint set, that is,

p[i](ℓ+ 1) ∈ Xvis-disk(p
[i](ℓ),P(ℓ);Qδ);

(ii) each edge of Gvis-disk,Qδ
at P(ℓ) is maintained after the motion step,

that is, if p[i] and p[j] are within range-limited line of sight at time
ℓ, then they are within range-limited line of sight also at time ℓ+ 1;

(iii) if Gvis-disk,Qδ
at P(ℓ) is connected, then Gvis-disk,Qδ

at P(ℓ + 1) is
connected; and

(iv) the number of connected components of the graph Gvis-disk,Qδ
at P(ℓ+

1) is equal to or smaller than the number of connected components
of the graph Gvis-disk,Qδ

at P(ℓ).

Remark 4.12 (Constraints for relative-sensing networks: cont’d).
Following up on Remarks 4.3 and 4.6, we consider a relative-sensing network
with range-limited visibility sensors (see Example 3.16). To compute the
connectivity constraint set for this network, it suffices to provide a relative
sensing version of the iterated truncation algorithm:

function relative-sensing iterated truncation(y; yenv)
% Executed by robot i with range-limited visibility sensor:

robot measurement is y = p
[j]
i ∈ Vidisk(02; (Qδ)i) for j 6= i

environment measurement is yenv = Vidisk(02; (Qδ)i)

1: Xtemp := yenv ∩B
(p

[j]
i

2 ,
r
2

)

2: while ∂Xtemp contains a concavity do
3: v := a strictly concave point of ∂Xtemp closest to [02, y]
4: Xtemp := Xtemp ∩Hyenv

(v)
5: return Xtemp

The algorithm output is Xvis-disk(0d, y), for y = p
[j]
i ∈ Vidisk(02; (Qδ)i). •

Next, we relax the constraints in Definition 4.10 to provide the network
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nodes with larger, and therefore less conservative, motion constraint sets.
Similarly to Section 4.2.2, we seek to enforce the preservation of a smaller
number of range-limited line-of-sight links, while still making sure that the
overall network connectivity is preserved. To do this, we recall from Sec-
tion 2.2 the notion of locally cliqueless graph Glc,G of a proximity graph
G. This proximity graph is illustrated in Figure 2.12. Let us use the short-
hand notation Glc-vis-disk,Qδ

≡ Glc,Gvis-disk,Qδ
. From Theorems 2.11(ii) and (iii),

respectively, recall that Glc-vis-disk,Qδ
has the following properties:

(i) it has the same connected components as Gvis-disk,Qδ
, that is, for all

point sets P ⊂ Rd, the graph has the same number of connected
components consisting of the same vertices; and

(ii) it is spatially distributed over Gvis-disk,Qδ
.

Because of (i), to maintain or decrease the number of connected components
of a range-limited visibility graph, it is sufficient to maintain or decrease the
number of connected components of the sparser graph Glc-vis-disk,Qδ

. Because
of (ii), it is possible for each agent to determine which of its neighbors in
Gvis-disk,Qδ

are its neighbors also in Glc-vis-disk,Qδ
. We formalize this discussion

as follows.

Definition 4.13 (Locally cliqueless line-of-sight connectivity con-
straint set). Consider a nonconvex allowable environment Qδ ⊂ R2 and a
group of agents at positions P = {p[1], . . . , p[n]} ⊂ Q. The locally cliqueless
line-of-sight connectivity constraint set of agent i with respect to P is

Xlc-vis-disk(p
[i],P;Qδ) =

{

x ∈ Xvis-disk(p
[i], q;Qδ)

∣

∣

q ∈ P s.t. (q, p[i]) is an edge of Glc-vis-disk,Qδ
(P)

}

. •

The following result is a direct consequence of the previous arguments.

Lemma 4.14 (Maintaining connectivity of sparser networks). Con-
sider a group of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time
ℓ. If each agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xlc-vis-disk

(

p[i](ℓ),P(ℓ);Qδ

)

− p[i](ℓ), i ∈ {1, . . . , n},
then, according to the discrete-time motion model (4.1.1):

(i) each agent remains in its locally cliqueless line-of-sight connectivity
constraint set;

(ii) two agents that are in the same connected component of Glc-vis-disk,Qδ

remain at the same connected component after the motion step; and

(iii) the number of connected components of the graph Glc-vis-disk,Qδ
at
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P(ℓ + 1) is equal to or smaller than the number of connected com-
ponents of the graph Glc-vis-disk,Qδ

at P(ℓ).

4.3 RENDEZVOUS ALGORITHMS

In this section, we present some algorithms that might be used by a robotic
network to achieve rendezvous. Throughout the section, we mainly focus on
the uniform network Sdisk of locally connected first-order agents in Rd; this
robotic network was introduced in Example 3.4.

4.3.1 Averaging control and communication law

We first study a behavior in which agents move toward a position computed
as the average of the received messages. This law is related to the distributed
linear algorithms discussed in Section 1.6 and, in particular, to adjacency-
based agreement algorithms and Vicsek’s model. This algorithm has also
been studied in the context of “opinion dynamics under bounded confidence”
and is known in the literature as the Krause model.

We loosely describe the averaging law, which we denote by CCaveraging,
as follows:

[Informal description] In each communication round each agent
performs the following tasks: (i) it transmits its position and
receives its neighbors’ positions; (ii) it computes the average of
the point set comprised of its neighbors and of itself. Between
communication rounds, each robot moves toward the average
point that it computed.

We next formulate the algorithm, using the description model of Chap-
ter 3. The law1 is uniform, static, and data-sampled, with standard message-
generation function:

Robotic Network: Sdisk with motion model (4.1.1) in Rd,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: averaging

1From Definition 3.9 and Remark 3.11 recall that a control and coordination law (1) is uniform
if processor state set, message-generation, state-transition and control functions are the same for
each agent; (2) is static if the processor state set is a singleton, i.e., the law requires no memory;
(3) is data-sampled if if the control functions are independent of the current position of the robot
and depend only upon the robots position at the last sample time.
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Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: return avrg({p}∪{prcvd | prcvd is a non-null message in y}) − p

An implementation of this control and communication law is shown in
Figure 4.5 for d = 1. Note that, along the evolution, (1) several robots
rendezvous, that is, agree upon a common location, and (2) some robots are
connected at the simulation’s beginning and not connected at the simula-
tion’s end (e.g., robots number 8 and 9, counting from the left). Our analysis

11
22
33
44

77
66
55

Figure 4.5 The evolution of a robotic network Sdisk, with r = 1.5, under the averaging
control and communication law. The vertical axis corresponds to the elapsed
time, and the horizontal axis to the positions of the agents in the real line.
The 51 agents are initially randomly deployed over the interval [−15, 15].

of the performance of this law is contained in the following theorem, whose
proof is postponed to Section 4.6.1.

Theorem 4.15 (Correctness and time complexity of averaging law).
For d = 1, the network Sdisk, the law CCaveraging achieves the task Trndzvs

with time complexity

TC(Trndzvs, CCaveraging) ∈ O(n5),

TC(Trndzvs, CCaveraging) ∈ Ω(n).

4.3.2 Circumcenter control and communication laws

Here, we define the crcmcntr control and communication law for the net-
work Sdisk. The law solves the rendezvous problem while keeping the net-
work connected. This law was introduced by Ando et al. (1999) and later
studied by Lin et al. (2007a) and Cortés et al. (2006).
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We begin by recalling two useful geometric concepts: (i) given a bounded
set S, its circumcenter CC(S) is the center of the closed ball of minimum
radius containing S (see Section 2.1.3); (ii) given a point p in a convex set Q
and a second point q, the from-to-inside map fti(p, q, S) is the point in the
closed segment [p, q] which is at the same time closest to q and inside S (see
Section 2.1.1). Finally, recall also the connectivity constraint set introduced
in Definition 4.4.

We loosely describe the crcmcntr law, denoted by CCcrcmcntr, as fol-
lows:

[Informal description] In each communication round each agent
performs the following tasks: (i) it transmits its position and re-
ceives its neighbors’ positions; (ii) it computes the circumcenter
of the point set comprised of its neighbors and of itself. Between
communication rounds, each robot moves toward this circum-
center point while maintaining connectivity with its neighbors
using appropriate connectivity constraint sets.

We next formulate the algorithm, using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function:

Robotic Network: Sdisk with discrete-time motion model (4.1.1),
with absolute sensing of own position, and
with communication range r, in Rd

Distributed Algorithm: crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X ) − p

This algorithm is illustrated in Figure 4.6.

Next, let us note that it is possible and straightforward to implement
the circumcenter law as a static relative-sensing control law on the relative-
sensing network with disk sensors Srs

disk introduced in Example 3.15:
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Figure 4.6 An illustration of the execution of the crcmcntr algorithm. Each row of
plots represents an iteration of the law. In each round, each agent computes
its goal point and its constraint set, and then moves toward the goal while
remaining in the constraint set.

Relative Sensing Network: Srs
disk with motion model (4.1.2),

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

Distributed Algorithm: relative-sensing crcmcntr

function ctl(y)

1: pgoal := CC({0d}∪{psnsd | for all non-null psnsd ∈ y})
2: X := Xdisk(0d, {psnsd | for all non-null psnsd ∈ y})
3: return fti(0d, pgoal,X )

In the remainder of this section, we generalize the circumcenter law in a
number of ways: (i) we modify the constraint set by imposing bounds on
the control inputs and by relaxing the connectivity constraint as much as
possible, while maintaining connectivity guarantees; and (ii) we implement
the circumcenter law on two distinct communication graphs. Let us note
that many of these generalized circumcenter laws can also be implemented
as relative-sensing control laws; in the interest of brevity, we do not present
the details.
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4.3.2.1 Circumcenter law with control bounds and relaxed connectivity con-

straints

First, assume that the agents have a compact input space U = B(0d, umax),
with umax ∈ R>0. Additionally, we adopt the relaxed G-connectivity con-
straint sets as follows. Let G be a proximity graph that is spatially dis-
tributed over Gdisk(r) and that has the same connected components as
Gdisk(r); examples include GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r). Recall
the G-connectivity constraint set from Definition 4.7. Combining the relaxed
connectivity constraint and the control magnitude bound, we redefine the
control function in the crcmcntr law to be:

function ctl(p, y)
% Includes control bound and relaxed G-connectivity constraint

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk,G(p, {prcvd | for all non-null prcvd ∈ y})∩B(p, umax)
3: return fti(p, pgoal,X ) − p

Second, the circumcenter law can be implemented also on robotic net-
works with different proximity graphs. For example, we can implement the
circumcenter algorithm without any change on the following network.

4.3.2.2 Circumcenter law on the limited Delaunay graph

We consider the same set of physical agents as in Sdisk. For r ∈ R>0,
we adopt as communication graph the r-limited Delaunay graph GLD(r),
described in Section 2.2. These data define the uniform robotic network
SLD = ({1, . . . , n},R, ELD), as described in Example 3.4. On this network,
we implement the crcmcntr law without any change, that is, with the same
message-generation and control function as we did for the implementation
on the network Sdisk.

4.3.2.3 Parallel circumcenter law on the ∞-disk graph

We consider the network S∞-disk of first-order robots in Rd, connected ac-
cording to the G∞-disk(r) graph (see Example 3.4). For this network, we
define the pll-crcmcntr law, which we denoted by CCpll-crcmcntr, by de-
signing d decoupled circumcenter laws running in parallel on each coordinate
axis of Rd. As before, this law is uniform and static. What is remarkable,
however, is that no constraint is required to maintain connectivity (see Ex-
ercise E4.4).
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The parallel circumcenter of the set S, denoted by PCC(S), is the center
of the smallest axis-aligned rectangle containing S. In other words, PCC(S)
is the component-wise circumcenter of S (see Figure 4.7). We state the

Figure 4.7 The gray point is the parallel circumcenter of the collection of black points.

parallel circumcenter law as follows:

Robotic Network: S∞-disk with discrete-time motion model (4.1.1) in Rd,
with absolute sensing of own position, and
with communication range r in L∞-metric

Distributed Algorithm: pll-crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := PCC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: return pgoal − p

4.3.3 Correctness and complexity of circumcenter laws

In this section, we characterize the convergence and complexity properties
of the circumcenter law and of its variations. The following theorem sum-
marizes the results known in the literature about the asymptotic properties
of the circumcenter law.

Theorem 4.16 (Correctness of the circumcenter laws). For d ∈ N,
r ∈ R>0, and ε ∈ R>0, the following statements hold:
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(i) on the network Sdisk, the law CCcrcmcntr (with control magnitude
bounds and relaxed G-connectivity constraints) achieves the exact
rendezvous task Trndzvs;

(ii) on the network SLD, the law CCcrcmcntr achieves the ε-rendezvous
task Tε-rndzvs; and

(iii) on the network S∞-disk, the law CCpll-crcmcntr achieves the exact
rendezvous task Trndzvs.

Furthermore, the evolutions of (Sdisk, CCcrcmcntr), (SLD, CCcrcmcntr), and
(S∞-disk, CCpll-crcmcntr) have the following properties:

(iv) If any two agents belong to the same connected component of the
respective communication graph at ℓ ∈ Z≥0, then they continue to
belong to the same connected component for all subsequent times
k ≥ ℓ.

(v) For each evolution, there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n such that:

(a) the evolution asymptotically approaches P ∗; and

(b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r
(for the networks Sdisk and SLD) or ‖p∗i − p∗j‖∞ > r (for the
network S∞-disk).

The proof of this theorem is given in Section 4.6.2. The robustness of
the circumcenter control and communication laws can be characterized with
respect to link failures (see Cortés et al., 2006).

Next, we analyze the time complexity of CCcrcmcntr. As we will see, next,
the complexity of CCcrcmcntr differs dramatically when applied to robotic
networks with different communication graphs. We provide complete results
for the networks Sdisk and SLD only for the case d = 1.

Theorem 4.17 (Time complexity of circumcenter laws). For r ∈ R>0

and ε ∈ ]0, 1[, the following statements hold:

(i) on the network Sdisk, evolving on the real line R (i.e., with d = 1),
TC(Trndzvs, CCcrcmcntr) ∈ Θ(n);

(ii) on the network SLD, evolving on the real line R (i.e., with d = 1),
TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Θ(n2 log(nε−1)); and

(iii) on the network S∞-disk, evolving on Euclidean space (i.e., with d ∈
N), TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(n).

The proof of this result is contained in Mart́ınez et al. (2007b).
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Remark 4.18 (Analysis in higher dimensions). The results in The-
orems 4.17(i) and (ii) induce lower bounds on the time complexity of the
circumcenter law in higher dimensions. Indeed, for arbitrary d ≥ 1, we have
the following:

(i) on the network Sdisk, TC(Trndzvs, CCcrcmcntr) ∈ Ω(n);

(ii) on the network SLD, TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Ω(n2 log(nε−1)).

We have performed extensive numerical simulations for the case d = 2
and the network Sdisk. We run the algorithm starting from generic initial
configurations (where, in particular, the robots’ positions are not aligned)
contained in a bounded region of R2. We have consistently obtained that
the time complexity to achieve Trndzvs with CCcrcmcntr starting from these
initial configurations is independent of the number of robots. This leads
us to conjecture that initial configurations where all robots are aligned
(equivalently, the 1-dimensional case) give rise to the worst possible per-
formance of the algorithm. In other words, we conjecture that, for d ≥ 2,
TC(Trndzvs, CCcrcmcntr) = Θ(n). •

Remark 4.19 (Congestion effects). As discussed in Remark 3.8, one
way of incorporating congestion effects into the network operation is to as-
sume that the parameters of the physical components of the network depend
upon the number of robots—for instance, by assuming that the communica-
tion range decreases with the number of robots. Theorem 4.17 presents an
alternative, equivalent, way of looking at congestion: the results hold un-
der the assumption that the communication range is constant, but allow for
the diameter of the initial network configuration (the maximum inter-agent
distance) to grow unbounded with the number of robots. •

4.3.4 The circumcenter law in nonconvex environments

In this section, we adapt the circumcenter algorithm to work on networks
in planar nonconvex allowable environments. Throughout the section, we
only consider the case of a compact allowable nonconvex environment Q
contracted into Qδ for a small positive δ. We present the algorithm in
two formats: for the communication-based network Svis-disk described in
Example 3.6, and for the relative-sensing network Srs

vis-disk described in Ex-
ample 3.16.

We modify the circumcenter algorithm in three ways: first, we adopt the
connectivity constraints described in the previous section for range-limited
line-of-sight links; second, we further restrict the robot motion to remain
inside the relative convex hull of the sensed robot positions; and third, we
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move towards the circumcenter of the constraint set, instead of the circum-
center of the neighbors positions. The details of the algorithm are as follows:

Robotic Network: Svis-disk with discrete-time motion model (4.1.1),
absolute sensing of own position and of Qδ, and
communication range r within line of sight (Gvis-disk,Qδ

)

Distributed Algorithm: nonconvex crcmcntr

Alphabet: A = R2 ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: X1 := Xvis-disk(p, {prcvd | for all non-null prcvd ∈ y};Qδ)
2: X2 := rco({p}∪{prcvd | for all non-null prcvd ∈ y}; Vi(p;Qδ))
3: pgoal := CC(X1 ∩X2)

4: return fti(p, pgoal, B(p, umax)) − p

Next, we present the relative sensing version; recall that p
[i]
i = 02 and that,

as discussed in Section 3.2.3 in the context of the evolution of a relative
sensing network with environment sensors, yenv denotes the environment
measurement provided by the range-limited visibility sensor:

Relative Sensing Network: Srs
vis-disk with motion model (4.1.2) in Qδ,

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ Vidisk(02; (Qδ)i) for j 6= i

environment sensing is yenv = Vidisk(02; (Qδ)i)

Distributed Algorithm: nonconvex relative-sensing crcmcntr

function ctl(y, yenv)

1: X1 := Xvis-disk(02, {psnsd | for all non-null psnsd ∈ y}; yenv)
2: X2 := rco({02}∪{psnsd | for all non-null psnsd ∈ y}; yenv)
3: pgoal := CC(X1 ∩X2)

4: return fti(02, pgoal, B(02, umax))

Theorem 4.20 (Correctness of the circumcenter law in nonconvex
environments). For δ > 0, let Qδ be a contraction of a compact allow-
able nonconvex environment Q. For r ∈ R>0 and ε ∈ R>0, on the net-
work Svis-disk, the law CCnonconvex crcmcntr (with control magnitude bounds)
achieves the ε-rendezvous task Tε-rndzvs. Furthermore, the evolution has the
following properties:
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(i) If any two agents belong to the same connected component of the
graph Gvis-disk,Qδ

at ℓ ∈ Z≥0, then they continue to belong to the
same connected component for all subsequent times k ≥ ℓ.

(ii) There exists P ∗ = (p∗1, . . . , p
∗
n) ∈ Qn

δ such that:

(a) the evolution asymptotically approaches P ∗; and

(b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or p∗i and p∗j are
not within range-limited line of sight.

The proof of this result can be found in Ganguli et al. (2009). A brief
sketch of the proof steps is presented in Section 4.6.4. The complexity of
the nonconvex crcmcntr law has not been characterized. However, note
that the evolution from any initial configuration such that Gvis,Qδ

is complete
is also an evolution of the crcmcntr law discussed in Section 4.3.2, and
hence Theorem 4.17(i) induces a lower bound on the time complexity.

4.4 SIMULATION RESULTS

In this section, we illustrate the execution of some circumcenter control and
communication laws introduced in this chapter. The crcmcntr law is im-
plemented on the networks Sdisk, SLD, and S∞-disk in MathematicaR© as a
library of routines and a main program running the simulation. The pack-
ages PlanGeom.m and SpatialGeom.m contain routines for the computation
of geometric objects in R2 and R3, respectively. These routines are freely
available at the book webpage http://coordinationbook.info

First, we show evolutions of (Sdisk,crcmcntr) in two and three dimen-
sions in Figures 4.8 and 4.9, respectively. Measuring displacements in me-
ters, we consider random initial positions over the square [−7, 7] × [−7, 7]
and the cube [−7, 7] × [−7, 7] × [−7, 7]. The 25 robotic agents have a com-
munication radius r = 4 and a compact input space U = B(0d, umax), with
umax = 0.15. As the simulations show, the task Trndzvs is achieved, as guar-
anteed by Theorem 4.16(i).

Second, within the same setup, we show an evolution of (SLD,crcmcntr)
in two dimensions in Figure 4.10. As the simulation shows, the task Tε-rndzvs

is achieved, as guaranteed by Theorem 4.16(ii).

Third, we show an evolution of (S∞-disk,pll-crcmcntr) in two dimen-
sions in Figure 4.11. As the simulations show, the task Trndzvs is achieved,
as guaranteed by Theorem 4.16(iii).

Finally, we refer the interested reader to Ganguli et al. (2009) for simula-
tion results for the nonconvex crcmcntr algorithm.
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(a) (b)

Figure 4.8 The evolution of (Sdisk,crcmcntr) with n = 25 robots in 2 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

4.5 NOTES

The rendezvous problem and the circumcenter algorithm were originally
introduced by Ando et al. (1999). The circumcenter algorithm has been
extended to other control policies, including asynchronous implementations,
in Lin et al. (2007a,b). The circumcenter algorithm has been extended
beyond planar problems to arbitrary dimensions in Cortés et al. (2006),
where its robustness properties are also characterized. Regarding Theo-
rem 4.16, the results on Sdisk appeared originally in Ando et al. (1999); the
results on SLD and on S∞-disk appeared originally in Cortés et al. (2006) and
in Mart́ınez et al. (2007b), respectively. Variations of the circumcenter law
in the presence of noise and sensor errors are studied in Mart́ınez (2009b).
The continuous-time version of the circumcenter law, with no connectivity
constraints, is analyzed in Lin et al. (2007c). Continuous-time control laws
for groups of robots with simple first-order dynamics and unicycle dynamics
are proposed in Lin et al. (2004, 2005) and Dimarogonas and Kyriakopou-
los (2007). In these works, the inter-robot topology is time dependent and
assumed a priori to be connected at all times. Rendezvous under communi-
cation quantization is studied in Fagnani et al. (2004) and Carli and Bullo
(2009). Rendezvous for unicycle robots with minimal sensing capabilities
is studied by Yu et al. (2008). Relationships with classic curve-shortening
flows are studied by Smith et al. (2007).

Rendezvous has also been studied within the computer science literature,
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Figure 4.9 The evolution of (Sdisk,crcmcntr) with n = 25 robots in 3 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

where the problem is referred to as the “gathering,” or point formation,
problem. Flocchini et al. (1999) and Suzuki and Yamashita (1999) study the
point formation problem under the assumption that each robot is capable
of sensing all other robots. Flocchini et al. (2005) propose asynchronous
algorithms to solve the gathering problem, and Agmon and Peleg (2006)
study the solvability of the problem in the presence of faulty robots.

Multi-robot rendezvous with line-of-sight sensors is considered in Roy and
Dudek (2001), where solutions are proposed based on the exploration of the
unknown environment and the selection of appropriate rendezvous points
at pre-specified times. Hayes et al. (2003) also consider rendezvous at a
specified location for visually guided agents, but the proposed solution re-
quires each agent to have knowledge of the location of all other agents. The
problem of computing a multi-robot rendezvous point in polyhedral sur-
faces made of triangular faces is considered in Lanthier et al. (2005). The
perimeter-minimizing algorithm presented by Ganguli et al. (2009) solves
the rendezvous problem for sensor-based networks with line-of-sight range-
limited sensors in nonconvex environments.

Regarding the connectivity maintenance problem, a number of works have
addressed the problem of designing a coordination algorithm that achieves
a general, non-specified task while preserving connectivity. The centralized
solution proposed in Zavlanos and Pappas (2005) allows for a general range
of agent motions. The distributed solution presented by Savla et al. (2009b)
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(a) (b)

Figure 4.10 The evolution of (SLD,crcmcntr) with n = 25 robots in 2 dimensions: (a)
shows the initial connected network configuration; (b) shows the evolution of
the individual agents until rendezvous is achieved.

gives connectivity maintaining constraints for second-order control systems
with input magnitude bounds. A distributed algorithm to perform graph
rearrangements that preserve the connectivity is presented in Schuresko and
Cortés (2007). Connectivity problems have been studied also in other con-
texts. Langbort and Gupta (2009) study the impact of the connectivity
of the interconnection topology in a class of network optimization prob-
lems. Spanos and Murray (2005) generate connectivity-preserving motions
between pairs of formations. Ji and Egerstedt (2007) design Laplacian-based
control laws to solve formation control problems while preserving connec-
tivity. Various works have focused on designing the network motion so that
some desired measure of connectivity (e.g., algebraic connectivity) is max-
imized under position constraints. Boyd (2006) and de Gennaro and Jad-
babaie (2006) consider convex constraints, while Kim and Mesbahi (2006)
deal with a class of nonconvex constraints. Zavlanos and Pappas (2007b)
use potential fields to maximize algebraic connectivity.

A continuous-time version of the averaging control and communication law
is also known as the Hegselmann-Krause model for “opinion dynamics under
bounded confidence” (see Hegselmann and Krause, 2002; Lorenz, 2007). In
this model, each agent may change its opinion by averaging it with that of
neighbors who are in an ε-confidence area. In other words, the difference
between the agent’s opinion and those of its neighbors’ should be bounded
by ε. A similar model where the communication between agents is random
is the Deffuant-Weisbuch model, inspired by a model of dissemination of
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(a) (b)

Figure 4.11 The evolution of (S∞-disk, pll-crcmcntr) with n = 25 robots in 2 dimen-
sions: (a) shows the initial connected network configuration; (b) shows the
evolution of the individual agents until rendezvous is achieved.

culture (see Deffuant et al., 2000; Axelrod, 1997).

4.6 PROOFS

This section gathers the proofs of the main results presented in the chapter.

4.6.1 Proof of Theorem 4.15

Proof. One can easily prove that, along the evolution of the network, the or-
dering of the agents is preserved, that is, the inequality p[i] ≤ p[j] is preserved
at the next time step. However, links between agents are not necessarily pre-
served (see, e.g., Figure 4.8). Indeed, connected components may split along
the evolution. However, merging events do not occur. Consider two contigu-
ous connected components C1 and C2 of Gdisk(r), with C1 to the left of C2.
By definition, the rightmost agent in the component C1 and the leftmost
agent in the component C2 are at a distance strictly larger than r. Now,
by executing the algorithm, they can only but increase that distance, since
the rightmost agent in C1 will move to the left, and the leftmost agent in
C2 will move to the right. Therefore, connected components do not merge.

Consider first the case of an initial network configuration for which the
communication graph remains connected throughout the evolution. Without
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loss of generality, assume that the agents are ordered from left to right ac-
cording to their identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). Let α ∈ {3, . . . , n}
have the property that agents {2, . . . , α − 1} are neighbors of agent 1, and
agent α is not. (If, instead, all agents are within an interval of length r, then
rendezvous is achieved in 1 time instant, and the statement in theorem is
easily seen to be true.) Note that we can assume that agents {2, . . . , α− 1}
are also neighbors of agent α. If this is not the case, then those agents that
are neighbors of agent 1 and not of agent α rendezvous with agent 1 at the
next time instant. At the time instant ℓ = 1, the new updated positions
satisfy

p[1](1) =
1

α− 1

α−1
∑

k=1

p[k](0),

p[γ](1) ∈
[ 1

α

α
∑

k=1

p[k](0), ∗
]

, γ ∈ {2, . . . , α− 1},

where ∗ denotes a certain unimportant point.

Now, we show that

p[1](α− 1) − p[1](0) ≥ r

α(α− 1)
. (4.6.1)

Let us first show the inequality for α = 3. Because of the assumption that
the communication graph remains connected, agent 2 is still a neighbor of
agent 1 at the time instant ℓ = 1. Therefore, p[1](2) ≥ 1

2(p[1](1) + p[2](1)),
and from here we deduce

p[1](2) − p[1](0) ≥ 1

2

(

p[2](1) − p[1](0)
)

≥ 1

2

(1

3

(

p[1](0) + p[2](0) + p[3](0)
)

− p[1](0)
)

≥ 1

6

(

p[3](0) − p[1](0)
)

≥ r

6
.

Let us now proceed by induction. Assume that inequality (4.6.1) is valid for
α − 1, and let us prove it for α. Consider first the possibility, when at the
time instant ℓ = 1, that the agent α − 1 is still a neighbor of agent 1. In
this case, p[1](2) ≥ 1

α−1

∑α−1
k=1 p

[k](1), and from here we deduce

p[1](2) − p[1](0) ≥ 1

α− 1

(

p[α−1](1) − p[1](0)
)

≥ 1

α− 1

( 1

α

α
∑

k=1

p[k](0) − p[1](0)
)

≥ 1

α(α− 1)

(

p[α](0) − p[1](0)
)

≥ r

α(α− 1)
,

which, in particular, implies (4.6.1). Consider then the case when agent
α − 1 is not a neighbor of agent 1 at the time instant ℓ = 1. Let β < α
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such that agent β − 1 is a neighbor of agent 1 at ℓ = 1, but agent β is not.
Since β < α, we have by induction p[1](β)− p[1](1) ≥ r

β(β−1) . From here, we

deduce that p[1](α− 1) − p[1](0) ≥ r
α(α−1) .

It is clear that after ℓ1 = α−1, we could again consider two complementary
cases (either agent 1 has all others as neighbors or not) and repeat the same
argument once again. In that way, we would find ℓ2 such that the distance
traveled by agent 1 after ℓ2 rounds would be lower bounded by 2r

n(n−1) .

Repeating this argument iteratively, the worst possible case is one in which
agent 1 keeps moving to the right and, at each time step, there is always
another agent which is not a neighbor. Since the diameter of the initial
condition P0 is upper bounded by (n− 1)r, in the worst possible situation,
there exists some time ℓk such that kr

(n−1)n = O(r(n− 1)). This implies that

k = O((n− 1)2n). Now we can upper bound the total convergence time ℓk
by ℓk =

∑k
i=1 αi − k ≤ k(n − 1), where we have used that αi ≤ n for all

i ∈ {1, . . . , n}. From here, we see that ℓk = O((n − 1)3n), and hence we
deduce that in O(n(n− 1)3) time instants there cannot be any agent which
is not a neighbor of the agent 1. Hence, all agents rendezvous at the next
time instant. Consequently,

TC(Trndzvs, CCaveraging, P0) = O(n(n− 1)3).

Finally, for a general initial configuration P0, because there are a finite
number of agents, only a finite number of splittings (at most n − 1) of the
connected components of the communication graph can take place along the
evolution. Therefore, we conclude that TC(Trndzvs, CCaveraging) = O(n5).

Let us now prove the lower bound. Consider an initial configuration P0 ∈
Rn where all agents are positioned in increasing order according to their
identity, and exactly at a distance r apart—say, p[i+1](0) − p[i](0) = r, i ∈
{1, . . . , n − 1}. Assume for simplicity that n is odd—when n is even, one
can reason in an analogous way. Because of the symmetry of the initial
condition, in the first time step, only agents 1 and n move. All the remaining
agents remain in their position, because it coincides with the average of its
neighbors’ position and its own. At the second time step, only agents 1, 2,
n − 1, and n move, and the others remain static because of the symmetry.
Applying this idea iteratively, one deduces that the time step when agents
n−1

2 and n+3
2 move for the first time is lower bounded by n−1

2 . Since both

agents have still at least a neighbor (agent n+1
2 ), the task Trndzvs has not been

achieved yet at this time step. Therefore, TC(Trndzvs, CCaveraging, P0) ≥
n−1

2 , and the result follows. �
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4.6.2 Proof of Theorem 4.16

Proof. We divide the proof of the theorem into three groups, one per net-
work.

STEP 1: Facts on (Sdisk, CCcrcmcntr). Fact (iv) for (Sdisk, CCcrcmcntr) is
a direct consequence of the control function definition of the crcmcntr law
and Lemma 4.8.

Let us show fact (i). Because G has the same connected components
as Gdisk(r), fact (iv) implies that the number of connected components of
Gdisk(r) can only but decrease. In other words, the number of agents in
each of the connected components of Gdisk(r) is non-decreasing. Since there
is a finite number of agents, there must exist ℓ0 such that the identity of
the agents in each connected component of Gdisk(r) is fixed for all ℓ ≥ ℓ0
(that is, no more agents are added to the connected component afterwards).
In what follows, without loss of generality, we assume that there is only
one connected component after ℓ0, i.e., the graph is connected (if this is
not the case, then the same argument follows through for each connected
component).

We prove that the law CCcrcmcntr (with control magnitude bounds and re-
laxed G-connectivity constraints) achieves the exact rendezvous task Trndzvs

in the following two steps:

(a) We first define a set-valued dynamical system ((Rd)n, (Rd)n, T ) such
that the evolutions of (Sdisk, CCcrcmcntr), starting from an initial
configuration where Gdisk(r) is connected, are contained in the set
of evolutions of the set-valued dynamical system.

(b) We then establish that any evolution of ((Rd)n, (Rd)n, T ) converges
to a point in diag((Rd)n) (the point might be different for different
evolutions).

This strategy is analogous to the discussion regarding the Overapproxima-
tion Lemma for time-dependent systems in Section 1.3.5.

Let as perform (a). Given a connected graphG with vertices {1, . . . , n}, let
us consider the constraint sets and goal points defined with respect to G. In
other words, given P = (p1, . . . , pn) ∈ (Rd)n, define for each i ∈ {1, . . . , n},

(pgoal)i := CC({pi}∪{pj | j ∈ NG(i)}),
Xi :=

⋂

{

B(pi+pj

2 , ri(P )
2 ) | j ∈ NG(i)

}

∩B(pi, umax),

where ri(P ) = max{r,max{‖pi − pj‖2 | j ∈ NG(i)}}. Since two neighbors
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according to G can be arbitrarily far from each other in Rd, we need to
modify the definition of the constraint set with the radius ri(P ) to prevent
Xi from becoming empty. Note that if ‖pi − pj‖2 ≤ r for all j ∈ NG(i), then
ri(P ) = r and, therefore, Xi = Xdisk,G(pi, P )∩B(pi, umax). It is also worth
observing that both (pgoal)i and Xi change continuously with (p1, . . . , pn).

Define the map ftiG : (Rd)n → (Rd)n by

ftiG(p1, . . . , pn) = (fti(p1, (pgoal)1,X1), . . . , fti(pn, (pgoal)n,Xn)).

One can think of ftiG as a circumcenter law where the neighboring relation-
ships among the agents never change. Because fti is continuous, and (pgoal)i

and Xi, i ∈ {1, . . . , n}, change continuously with (p1, . . . , pn), we deduce
that ftiG is continuous.

We now define a set-valued dynamical system ((Rd)n, (Rd)n, T ) through
the set-valued map T : (Rd)n ⇉ (Rd)n given by

T (p1, . . . , pn) = {ftiG(p1, . . . , pn) | G is a strongly connected digraph}.
Note that the evolution of the crcmcntr law using a proximity graph such
as Gdisk(r) is just one of the multiple evolutions described by this set-valued
map. This concludes (a).

Let us now perform (b). To characterize the convergence properties of
the set-valued dynamical system, we use the LaSalle Invariance Principle in
Theorem 1.21. With the notation of this result, we select W = (Rd)n. This
set is clearly strongly positively invariant for ((Rd)n, (Rd)n, T ).

Closedness of the set-valued map. Since ftiG is continuous for each di-
graph G and there is a finite number of strongly connected digraphs on the
vertices {1, . . . , n}, Exercise E1.9 implies that T is closed.

Common Lyapunov function. Define the function Vdiam : (Rd)n → R≥0

by

Vdiam(P ) = max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.
With a slight abuse of notation, we denote by co(P ) the convex hull of
{p1, . . . , pn} ⊂ Rd. Note that Vdiam(P ) = diam(co(P )). The function Vdiam

has the following properties:

(i) Vdiam is continuous and invariant under permutations of its argu-
ments.

(ii) Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n), where we recall that
diag((Rd)n) = {(p1, . . . , pn) ∈ (Rd)n | p[i] = · · · = p[n] ∈ Rd} de-
notes the diagonal set of (Rd)n. This fact is an immediate conse-
quence of the fact that, given a set S ⊂ (Rd)n, diam(co(S)) = 0 if
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and only if S is a singleton.

(iii) Vdiam is non-increasing along T on (Rd)n. Consider a finite set
of points S ∈ F((Rd)n) and let CC(S) be its circumcenter. From
Lemma 2.2(i), we have CC(S) ∈ co(S). Therefore, for any strongly
connected digraph G, we have that co(ftiG(P )) ⊂ co(P ) for any
P ∈ (Rd)n. Since for any two sets S1, S2 ⊂ (Rd)n such that co(S2) ⊂
co(S2) it holds that Vdiam(S2) ≤ Vdiam(S1), then Vdiam(ftiG(P )) ≤
Vdiam(P ) for any strongly connected digraph G, which implies that
Vdiam is non-increasing along T on (Rd)n.

Bounded evolutions. Consider any initial condition (p1(0), . . . , pn(0)) ∈
(Rd)n. For any strongly connected digraph, G, we have

ftiG(p1(ℓ), . . . , pn(ℓ)) ∈ co(p1(0), . . . , pn(0)),

for all ℓ ∈ Z≥0. Therefore, any evolution of the set-valued dynamical system
((Rd)n, (Rd)n, T ) is bounded.

Characterization of the invariant set. By the LaSalle Invariance for set-
valued dynamical systems in Theorem 1.21, any evolution with initial con-
dition in W = (Rd)n approaches the largest weakly positively invariant set
M contained in

{P ∈ (Rd)n | ∃P ′ ∈ T (P ) such that Vdiam(P ′) = Vdiam(P )}.
We show that M = diag((Rd)n). Clearly, diag((Rd)n) ⊂ M . To prove
the other inclusion, we reason by contradiction. Assume that P ∈ M \
diag((Rd)n) and, therefore, Vdiam(P ) > 0. Let G be a strongly connected di-
graph and consider ftiG(P ). For each i ∈ {1, . . . , n}, we distinguish two cases
depending on whether pi is or is not a vertex of co(P ). If pi 6∈ Ve(co(P )),
then Lemma 2.2(i) implies that fti(pi, (pgoal)i,Xi) ∈ co(P ) \ Ve(co(P )).

If pi ∈ Ve(co(P )), then we must take into consideration the possibility of
having more than one agent located at the same point. If the location of
all the neighbors of i in the digraph G coincides with pi, then agent i will
not move, and hence fti(pi, (pgoal)i,Xi) ∈ Ve(co(P )). However, we can show
that the application of ftiG strictly decreases the number of agents located
at pi. Let us denote this number by Ni, that is,

Ni = |{j ∈ {1, . . . , n} | pj = pi and pj ∈ {p1, . . . , pn}}|.
Since the digraph G is strongly connected, there must exist at least an
agent located at pi with a neighbor which is not located at pi (otherwise,
all agents would be at pi, which is a contradiction). In other words, there
exist i∗, j ∈ {1, . . . , n} such that pi∗ = pi, pj 6= pi, and j ∈ NG(i∗). By
Lemma 2.2(i), we have that (pgoal)i∗ ∈ co(P ) \ Ve(co(P )) and, therefore,
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(pgoal)i∗ 6= pi∗ . Combining this with the fact that

{pi}∪{pj | j ∈ NG(i)} ⊂ B(pi∗ , ri∗(P )),

we can apply Lemma 2.2(ii) to ensure that ]pi∗ , (pgoal)i∗ [ has nonempty in-
tersection with Xi∗ . Therefore, fti(pi∗ , (pgoal)i∗ ,Xi∗) ∈ co(P ) \ Ve(co(P )),
and the number Ni of agents located at pi decreases at least by one with
the application of ftiG.

Next, we show that, after a finite number of steps, no agents remain at
the location pi. Define N = max{Ni | pi ∈ Ve(co(P ))} < n − 1. Then
all agents in the configuration ftiG1

(ftiG2
(. . . ftiGN

(P ))) are contained in
co(P ) \ Ve(co(P )), for any collection of strongly connected directed graphs
G1, . . . , GN . Therefore, diam(co(ftiG1

(ftiG2
(. . . ftiGN

(P ))))) < diam(co(P )),
which contradicts the fact that M is weakly invariant.

Point convergence. We have proved that any evolution of ((Rd)n, (Rd)n, T )
approaches the set diag((Rd)n). To conclude the proof, let us show that the
convergence of each trajectory is to a point, rather than to the diagonal set.
Let {P (ℓ) | ℓ ∈ Z≥0} be an evolution of the set-valued dynamical system.
Since the sequence is contained in the compact set co(P (0)), there exists a
convergent subsequence {P (ℓk) | k ∈ Z≥0}, that is, there exists p ∈ Rd such
that

lim
k→+∞

P (ℓk) = (p, . . . , p). (4.6.2)

Let us show that the whole sequence {P (ℓ) | ℓ ∈ Z≥0} converges to (p, . . . , p).
Because of (4.6.2), for any ε > 0, there exists k0 such that for k ≥ k0 one has
co(P (ℓk)) ⊂ B(p, ε/

√
n). From this, we deduce that co(P (ℓ)) ⊂ B(p, ε/

√
n)

for all ℓ ≥ ℓk0
, which in turn implies that ‖P (ℓ) − (p, . . . , p)‖2 ≤ ε for all

ℓ ≥ ℓk0
, as claimed. This concludes (b).

The steps (a) and (b) imply that any evolution of (Sdisk, CCcrcmcntr) start-
ing from an initial configuration where Gdisk(r) is connected converges to a
point in diag((Rd)n). To conclude the proof of fact (i), we only need to es-
tablish that this convergence is in finite time. This last fact is a consequence
of Exercise E4.5.

Fact (v) for (Sdisk, CCcrcmcntr) is a consequence of facts (i) and (iv).

STEP 2: Facts on (SLD, CCcrcmcntr). The proof of facts (i), (iv), and (v)
for (SLD, CCcrcmcntr) is analogous to the proof of these facts for the pair
(Sdisk, CCcrcmcntr), and we leave it to the reader.

STEP 3: Facts on (S∞-disk, CCpll-crcmcntr). From the expression for
the control function of CCpll-crcmcntr, we deduce that the evolution un-
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der CCpll-crcmcntr of the robotic network S∞-disk (in d dimensions) can be
alternatively described as the evolution under CCcrcmcntr of d robotic net-
works Sdisk in R (see Exercise E4.4). Therefore, facts (i), (iv), and (v) for
the pair (S∞-disk, CCpll-crcmcntr) follow from facts (i), (iv), and (v) for the
pair (Sdisk, CCcrcmcntr). �

4.6.3 Proof of Theorem 4.17

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ Rn denote the initial condition.

Fact (i). For d = 1, the connectivity constraints on each agent i ∈ {1, . . . , n}
imposed by the constraint set

Xdisk(p
[i], {prcvd | for all non-null prcvd ∈ y[i]}) (4.6.3)

are superfluous. In other words, the goal configuration resulting from the
evaluation by agent i of the control function of the crcmcntr law belongs
to the constraint set in (4.6.3). Moreover, the order of the robots on the
real line is preserved from one time step to the next. Both observations are
a consequence of Exercise E4.3.

Let us first establish the upper bound in fact (i). Consider the case when
Gdisk(r) is connected at P0. Without loss of generality, assume that the
agents are ordered from left to right according to their identifier, that is,
p[1](0) ≤ · · · ≤ p[n](0). Let α ∈ {3, . . . , n} have the property that agents
{2, . . . , α− 1} are neighbors of agent 1, and agent α is not. (If, instead, all
agents are within an interval of length r, then rendezvous is achieved after
one time step, and the upper bound in fact (i) is easily seen to be true.)
Figure 4.12 presents an illustration of the definition of α. Note that we can

p[1](0) p[α−1](0) p[α](0)

r

Figure 4.12 The definition of α ∈ {3, . . . , n} for an initial network configuration.

assume that agents {2, . . . , α−1} are also neighbors of agent α. If this is not
the case, then those agents that are neighbors of agent 1 and not of agent
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α, rendezvous with agent 1 after one time step. At the time instant ℓ = 1,
the new updated positions satisfy

p[1](1) =
p[1](0) + p[α−1](0)

2
,

p[γ](1) ∈
[

p[1](0) + p[α](0)

2
,
p[1](0) + p[γ](0) + r

2

]

,

for γ ∈ {2, . . . , α − 1}. These equalities imply that p[1](1) − p[1](0) =
1
2

(

p[α−1](0) − p[1](0)
)

≤ 1
2r. Analogously, we deduce p[1](2) − p[1](1) ≤ 1

2r
and, therefore,

p[1](2) − p[1](0) ≤ r. (4.6.4)

On the other hand, from p[1](2) ∈
[

1
2

(

p[1](1) + p[α−1](1)
)

, ∗
]

(where the sym-
bol ∗ represents a certain unimportant point in R), we deduce

p[1](2) − p[1](0) ≥ 1

2

(

p[1](1) + p[α−1](1)
)

− p[1](0)

≥ 1

2

(

p[α−1](1) − p[1](0)
)

≥ 1

2

(p[1](0) + p[α](0)

2
− p[1](0)

)

=
1

4

(

p[α](0) − p[1](0)
)

≥ 1

4
r . (4.6.5)

Inequalities (4.6.4) and (4.6.5) mean that, after at most two time steps,
agent 1 has traveled a distance greater than r/4. In turn, this implies that

1

r
diam(co(P0)) ≤ TC(Trndzvs, CCcrcmcntr, P0) ≤

4

r
diam(co(P0)).

If Gdisk(r) is not connected at P0, note that along the network evolution,
the connected components of the r-disk graph do not change. Using the
previous characterization on the distance traveled by the leftmost agent of
each connected component in at most two time steps, we deduce that

TC(Trndzvs, CCcrcmcntr, P0) ≤
4

r
max

C∈C(P0)
diam(co(C)),

where C(P0) denotes the collection of connected components of Gdisk(r) at P0.
The connectedness of each C ∈ C(P0) implies that diam(co(C)) ≤ (n− 1)r,
and therefore, TC(Trndzvs, CCcrcmcntr) ∈ O(n).

The lower bound in fact (i) is established by considering P0 ∈ Rn such
that p[i+1](0)−p[i](0) = r, i ∈ {1, . . . , n−1}. For this configuration, we have
diam(co(P0)) = (n−1)r and, therefore, TC(Trndzvs, CCcrcmcntr, P0) ≥ n−1.

Fact (ii). In the r-limited Delaunay graph, two agents on the line that are
at most at a distance r from each other are neighbors if and only if there
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are no other agents between them. Also, note that the r-limited Delaunay
graph and the r-disk graph have the same connected components (cf., Theo-
rem 2.8). An argument similar to the one used in the proof of fact (i) above
guarantees that the connectivity constraints imposed by the constraint sets
Xdisk(p

[i], {prcvd | for all non-null prcvd ∈ y[i]}) are again superfluous.

Consider first the case when GLD(r) is connected at P0. Note that this
is equivalent to Gdisk(r) being connected at P0. Without loss of generality,
assume that the agents are ordered from left to right according to their
identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). The evolution of the network under
CCcrcmcntr can then be described as the discrete-time dynamical system

p[1](ℓ+ 1) =
1

2
(p[1](ℓ) + p[2](ℓ)),

p[2](ℓ+ 1) =
1

2
(p[1](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ+ 1) =
1

2
(p[n−2](ℓ) + p[n](ℓ)),

p[n](ℓ+ 1) =
1

2
(p[n−1](ℓ) + p[n](ℓ)).

Note that this evolution respects the ordering of the agents. Equivalently,
we can write P (ℓ+ 1) = AP (ℓ), where A ∈ Rn×n is the matrix given by

A =



















1
2

1
2 0 . . . . . . 0

1
2 0 1

2 . . . . . . 0
0 1

2 0 1
2 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

2 0 1
2

0 . . . . . . 0 1
2

1
2



















.

Note that A = ATrid+
n

(

1
2 , 0

)

, as defined in Section 1.6.4. Theorem 1.80(i)

implies that, for Pave = 1
n1T

nP0, we have that limℓ→+∞ P (ℓ) = Pave1n, and

that the maximum time required for ‖P (ℓ) − Pave1n

∥

∥

2
≤ η‖P0 − Pave1n‖2

(over all initial conditions in Rn) is Θ
(

n2 log η−1
)

. (Note that this also
implies that agents rendezvous at the location given by the average of their
initial positions. In other words, the asymptotic rendezvous position for this
case can be expressed in closed form, as opposed to the case with the r-disk
graph.)

Next, let us convert the contraction inequality on 2-norms into an appro-
priate inequality on ∞-norms. Note that diam(co(P0)) ≤ (n − 1)r because
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GLD(r) is connected at P0. Therefore,

‖P0 − Pave1‖∞ = max
i∈{1,...,n}

|p[i](0) − Pave| ≤ |p[1](0) − p[n](0)| ≤ (n− 1)r.

For ℓ of order n2 log η−1, we use this bound on ‖P0 −Pave1‖∞ and the basic
inequalities ‖v‖∞ ≤ ‖v‖2 ≤ √

n‖v‖∞ for all v ∈ Rn, to obtain

‖P (ℓ) − Pave1‖∞ ≤ ‖P (ℓ) − Pave1‖2 ≤ η‖P0 − Pave1‖2

≤ η
√
n‖P0 − Pave1‖∞ ≤ η

√
n(n− 1)r.

This means that (rε)-rendezvous is achieved for η
√
n(n− 1)r = rε, that is,

in time O(n2 log η−1) = O(n2 log(nε−1)).

Next, we show the lower bound. Consider the unit-length eigenvector

vn =
√

2
n+1(sin π

n+1 , . . . , sin
nπ

n+1)T ∈ Rn of Tridn−1(
1
2 , 0,

1
2) corresponding

to the largest singular value cos(π
n). For µ = −1

10
√

2
rn5/2, we then define the

initial condition

P0 = µP+

[

0
vn−1

]

∈ Rn.

One can show that p[i](0) < p[i+1](0) for i ∈ {1, . . . , n − 1}, that Pave = 0,
and that max{p[i+1](0)−p[i](0) | i ∈ {1, . . . , n−1}} ≤ r. Using Lemma 1.82
and because ‖w‖∞ ≤ ‖w‖2 ≤ √

n‖w‖∞ for all w ∈ Rn, we compute

‖P0‖∞ =
rn5/2

10
√

2

∥

∥

∥

∥

∥

P+

[

0
vn−1

]

∥

∥

∥

∥

∥

∞
≥ rn2

10
√

2

∥

∥

∥

∥

∥

P+

[

0
vn−1

]

∥

∥

∥

∥

∥

2

≥ rn

10
√

2
‖vn−1‖2 =

rn

10
√

2
.

The trajectory P (ℓ) = (cos(π
n))ℓP0 therefore satisfies

‖P (ℓ)‖∞ =
(

cos
(π

n

))ℓ
‖P0‖∞ ≥ rn

10
√

2

(

cos
(π

n

))ℓ
.

Therefore, ‖P (ℓ)‖∞ is larger than 1
2rε so long as 1

10
√

2
n(cos(π

n))ℓ > 1
2ε, that

is, so long as

ℓ <
log(ε−1n) − log(5

√
2)

− log
(

cos(π
n)

) .

In exercise E4.7, the reader is asked to show that the asymptotics of this
bound correspond to the lower bound in fact (i).

Now consider the case when GLD(r) is not connected at P0. Note that the
connected components do not change along the network evolution. There-
fore, the previous reasoning can be applied to each connected component.
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Since the number of agents in each connected component is strictly less than
n, the time complexity can only but improve. Therefore, we conclude that

TC(Trndzvs, CCcrcmcntr) ∈ Θ(n2 log(nε−1)).

Fact (iii). Recall from the proof of Theorem 4.6.2 that the evolution under
CCpll-crcmcntr of the robotic network S∞-disk (in d dimensions) can be alter-
natively described as the evolution under CCcrcmcntr of d robotic networks
Sdisk in R (see Exercise E4.4). Fact (iii) now follows from fact (i). �

4.6.4 Proof sketch of Theorem 4.20

Here, we only provide a sketch of the proof of Theorem 4.20. Fact (i) is a
consequence of the control function definition of the nonconvex crcmcntr
law in Section 4.3.4 and Lemma 4.11. Fact (ii) follows from the fact that
the law CCnonconvex crcmcntr (with control magnitude bounds) achieves the
ε-rendezvous task Tε-rndzvs and fact (i).

To show that, on the network Svis-disk, the law CCnonconvex crcmcntr (with
control magnitude bounds) achieves the ε-rendezvous task Tε-rndzvs, one can
follow the same overapproximation strategy that we used in the proof of
Theorem 4.16, STEP 1:, that is,

(a) define a set-valued dynamical system (Qn
δ , Q

n
δ , T ) such that the evo-

lutions of (Svis-disk, CCnonconvex crcmcntr) starting from an initial
configuration where Gvis-disk,Qδ

is connected are contained in the set
of evolutions of the set-valued dynamical system; and

(b) establish that any evolution of (Qn
δ , Q

n
δ , T ) converges to a point

in diag(Qn
δ ) (note that the point might be different for different

evolutions).

We refer to Ganguli et al. (2009) for a detailed development of this proof
strategy. Here, we only remark that in order to carry out (b), the proof uses
the LaSalle Invariance Principle in Theorem 1.21, with the perimeter of the
relative convex hull of a set of points as Lyapunov function.

4.7 EXERCISES

E4.1 (Maintaining connectivity of sparser networks). Prove Lemma 4.8.
Hint: Use Lemma 4.2 and the fact that G and Gdisk(r) have the same connected
components.

E4.2 (Maintaining network line-of-sight connectivity). Prove Lemma 4.11.
Hint: Use Proposition 4.9.
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E4.3 (Enforcing range-limited links is unnecessary for the crcmcntr law on
R). Let P = {p1, . . . , pn} ∈ F(R). For r ∈ R>0, we work with the r-disk proximity
graph Gdisk(r) evaluated at P. Let i ∈ {1, . . . , n} and consider the circumcenter
of the set comprised of pi and of its neighbors:

(pgoal)i = CC({pi}∪NGdisk(r),pi
(P)).

Show that the following hold:

(i) if pi and pj are neighbors in Gdisk(r), then (pgoal)i belongs to B(
pi+pj

2
, r

2
);

(ii) if pi and pj are neighbors in Gdisk(r) and pi ≤ pj , then (pgoal)i ≤ (pgoal)j ;
and

Finally, discuss the implication of (i) and (ii) in the execution of the crcmcntr
law on the 1-dimensional space R.
Hint: Express (pgoal)i as a function of the position of the leftmost and rightmost
points among the neighbors of pi.

E4.4 (Enforcing range-limited links is unnecessary for the pll-crcmcntr law).
Let P = {p1, . . . , pn} ∈ F(Rd) and r ∈ R>0. For k ∈ {1, . . . , d}, denote by
πk : Rd → R the projection onto the kth component. Do the following tasks:

(i) Show that pi and pj are neighbors in G∞-disk(r) if and only if, for all
k ∈ {1, . . . , d}, πk(pi) and πk(pj) are neighbors in Gdisk(r).

(ii) For S ⊂ Rd, justify that the parallel circumcenter PCC(S) ∈ Rd of S can
be described as

πk(PCC(S)) = CC(πk(S)), for k ∈ {1, . . . , d}.

(iii) Use (i), (ii), and Exercise E4.3(i) to justify that no constraint is required
to maintain connectivity of the ∞-disk graph in the pll-crcmcntr law.
In other words, show that if pi and pj are neighbors in the proxim-
ity graph G∞-disk(r), then also the points PCC({pi}∪NG∞-disk(r),pi

(P))
and PCC({pj}∪NG∞-disk(r),pj

(P)) are neighbors in the proximity graph
G∞-disk(r).

E4.5 (Finite-time convergence of the crcmcntr law on Sdisk). For umax, r ∈ R>0,
let a = min{umax,

r
2
}. Let P = {p1, . . . , pn} ∈ F(Rd), and assume that there exists

p ∈ Rd such that

{p1, . . . , pn} ⊂ B(p, a).

Do the following tasks:

(i) Show that Gdisk(r) evaluated at {p1, . . . , pn} is the complete graph.

(ii) Justify why ‖pi − CC({p1, . . . , pn})‖2 ≤ a, for all i ∈ {1, . . . , n}.
(iii) Show that CC({p1, . . . , pn}) ∈ Xdisk(pi,P)∩B(pi, umax).

(iv) What is the evolution of the pair (Sdisk, CCcrcmcntr) (with control magni-
tude bounds) starting from (p1, . . . , pn)?

E4.6 (Variation of the crcmcntr law). Let P = {p1, . . . , pn} ∈ F(Rd). For r ∈
R>0, we work with the r-disk proximity graph Gdisk(r) evaluated at P. For each
i ∈ {1, . . . , n}, consider the circumcenter of the set comprised of pi and of the
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mid-points with its neighbors:

(pgoal)i = CC
`
{pi}∪

˘pi + pj

2

˛̨
pj ∈ NGdisk(r),pi

(P)
¯´

.

Do the following:

(i) Show that if pi and pj are neighbors in Gdisk(r), then (pgoal)i and (pgoal)j

are neighbors in Gdisk(r).

(ii) Use (i) to design a control and communication law on the network Sdisk

in Rd that, while not enforcing any connectivity constraints, preserves all
neighboring relationships in Gdisk(r) and achieves the ε-rendezvous task
Tε-rndzvs.

(iii) Justify why the law designed in (ii) does not achieve the exact rendezvous
task Trndzvs.

E4.7 (Asymptotics of the lower bound in Theorem 4.17(ii)). Show that, as
n → +∞,

log(ε−1n) − log(5
√

2)

− log
`
cos(π

n
)
´ =

n2

π2

`
log(ε−1n) − log(5

√
2)

´
+ O(1).

Use this fact to complete the proof of the lower bound in the proof of Theo-
rem 4.17(ii).
Hint: Use the Taylor series expansion of log(cos(x)) at x = 0.
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Chapter Five

Deployment

The aim of this chapter is to present various solutions to the deployment
problem. The deployment objective is to optimally place a group of robots
in an environment of interest. The approach taken here consists of identify-
ing aggregate functions that measure the quality of deployment of a given
network configuration and designing control and communication laws that
optimize these measures.

The variety of algorithms presented in the chapter stems from two causes.
First, different solutions arise from the interplay between the spatially dis-
tributed character of the coordination algorithms and the limited sensing
and communication capabilities of the robotic network. As an example, dif-
ferent solutions are feasible when agents have range-limited communication
capabilities or when agents have omnidirectional line-of-sight visibility sen-
sors. Second, there is no universal notion of deployment. Different scenarios
give rise to different ways of measuring what constitutes a good deploy-
ment. As an example, a robotic network might follow a different strategy
depending on whether or not it has information about areas of importance
in the environment: in the first case, by incorporating the knowledge on the
environment; or in the second, by assuming a worst-case scenario, where
important things can be happening precisely at the furthest-away location
from the network configuration.

Our exposition here follows Cortés et al. (2004, 2005), and Cortés and
Bullo (2005). Our approach makes extensive use of the multicenter functions
from geometric optimization introduced in Chapter 2. It is not difficult to
synthesize continuous-time gradient ascent algorithms using the smoothness
results presented in Section 2.3, and characterize their asymptotic conver-
gence properties (as we ask the reader to do in Exercises E2.14 and E2.15).
However, following the robotic network model of Chapter 3, we are interested
in discrete-time algorithms. In general, gradient ascent algorithms imple-
mented in discrete time require the selection of appropriate step sizes that
guarantee the monotonic evolution of the objective function. This is usually
accomplished via line search procedures, (see e.g., Bertsekas and Tsitsiklis,
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1997). In this chapter, we show that the special geometric properties of the
multicenter functions and their gradients allow us to identify natural target
locations for the robotic agents without the need to perform any line search.

The chapter is organized as follows. In the first section, we formally de-
fine the notions of deployment via task maps and multicenter functions. In
the next section, we present motion coordination algorithms to achieve each
deployment task. Specifically, we introduce control and communication laws
based on various notions of geometric centers. We present convergence and
complexity results for the proposed algorithms, along with simulations illus-
trating our analysis. The third section presents various simulations of the
proposed motion coordination algorithms. We end the chapter with three
sections on, respectively, bibliographic notes, proofs of the results presented
in the chapter, and exercises. Throughout the exposition, we make extensive
use of proximity graphs, multicenter functions, and geometric optimization.
The convergence and complexity analyses are based on the LaSalle Invari-
ance Principle and on linear dynamical systems defined by Toeplitz matrices.

5.1 PROBLEM STATEMENT

Here, we introduce various notions of deployment. We assume that S =
({1, . . . , n},R, Ecmm) is a uniform robotic network, where the robots’ physi-
cal state space is a (simple convex) polytope Q ⊂ Rd that describes an envi-
ronment of interest. We define our notions of deployment relying upon the
geometric optimization problems discussed in Section 2.3. Loosely speak-
ing, we aim to deploy the robots in such a way as to optimize one of the
multicenter functions, such as the expected-value multicenter function Hexp,
the disk-covering multicenter function Hdc, or the sphere-packing multicen-
ter function Hsp. Indeed, these functions can be interpreted as quality-of-
service measures for different scenarios. In order to formally define the task
maps encoding the deployment objective, we take the following approach:
since the optimizers of these measures are critical points, and these critical
points are network configurations that make the gradients vanish, we define
the task map to take the true value at these configurations.

5.1.1 The distortion, area, and mixed distortion-area deployment tasks

In this section, we define various notions of deployment originating from the
expected-value multicenter function Hexp. Recall the concepts of density
and performance introduced in Section 2.3. Let φ : Rd → R>0 be a density
function on Rd with support Q. One can interpret φ as a function measur-
ing the probability that some event takes place over the environment. Let
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f : R≥0 → R be a performance, that is, a non-increasing and piecewise dif-
ferentiable function possibly with finite jump discontinuities. Performance
functions describe the utility of placing a robot at a certain distance from
a location in the environment. Here, we will restrict our attention to the
cases f(x) = −x2 (distortion problem), f(x) = 1[0,a](x), a ∈ R>0 (area

problem), and f(x) = −x2 1[0,a](x) − a2 · 1]a,+∞[(x), with a ∈ R>0 (mixed
distortion-area problem).

For ε ∈ R>0, we define the ε-distortion deployment task Tε-distor-dply :
Qn → {true, false} by

Tε-distor-dply(P ) =

{

true, if
∥

∥p[i] − CMφ(V [i](P ))
∥

∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where V [i](P ) denotes the Voronoi cell of robot i, and CMφ(V [i](P )) denotes
its centroid computed according to φ (see Section 2.1). In other words,
Tε-distor-dply is true for those network configurations where each robot is
sufficiently close to the centroid of its Voronoi cell. According to Theo-
rem 2.16, centroidal Voronoi configurations correspond to the critical points
of the multicenter function Hdist.

For r, ε ∈ R>0, we define the ε-r-area deployment task Tε-r-area-dply : Qn →
{true, false} as follows: we define Tε-r-area-dply(P ) = true whenever

∥

∥

∥

∫

V [i](P )∩ ∂B(p[i], r

2
)
nout(q)φ(q)dq

∥

∥

∥

2
≤ ε, i ∈ {1, . . . , n},

and we define Tε-r-area-dply(P ) = true otherwise. Here, the symbol nout

denotes the outward normal vector to B(p[i], r
2). In other words, Tε-r-area-dply

is true for those network configurations where each agent is sufficiently close

to a local maximum for the area of its r
2 -limited Voronoi cell V

[i]
r

2

(P ) =

V [i](P )∩B(p[i], r
2) at fixed V [i](P ). According to Theorem 2.16, the r

2 -
limited area-centered Voronoi configurations correspond to the critical points
of the multicenter function Harea, r

2
.

Finally, for r, ε ∈ R>0, we define the ε-r-distortion-area deployment task
Tε-r-distor-area-dply : Qn → {true, false} by

Tε-r-distor-area-dply(P )

=

{

true, if
∥

∥p[i] − CMφ(V
[i]
r

2

(P )))
∥

∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.

In other words, Tε-r-distor-area-dply is true for those network configurations
where each robot is sufficiently close to the centroid of its r

2 -limited Voronoi
cell. According to Theorem 2.16, r

2 -limited centroidal Voronoi configurations
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are the critical points of the multicenter function Hdist-area, r

2
.

5.1.2 The disk-covering and sphere-packing deployment tasks

Here, we provide two additional notions of deployment based on the multi-
center functions Hdc and Hsp, respectively.

For ε ∈ R>0, the ε-disk-covering deployment task Tε-dc-dply : Qn →
{true, false} is defined as

Tε-dc-dply(P ) =

{

true, if ‖p[i] − CC(V [i](P ))‖2 ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

where CC(V [i](P )) denotes the circumcenter of the Voronoi cell of robot i.
In other words, Tε-dc-dply is true for those network configurations where each
robot is sufficiently close to the circumcenter of its Voronoi cell. Accord-
ing to Section 2.3.2, circumcenter Voronoi configurations are, under certain
technical conditions, critical points of the multicenter function Hdc.

For ε ∈ R>0, the ε-sphere-packing deployment task Tε-sp-dply : Qn →
{true, false} is defined as

Tε-sp-dply(P ) =

{

true, if dist2(p
[i], IC(V [i](P ))) ≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where IC(V [i](P )) denotes the incenter set of the Voronoi cell of robot i. In
other words, Tε-sp-dply is true for those network configurations where each
robot is sufficiently close to the incenter set of its Voronoi cell. According
to Section 2.3.3, incenter Voronoi configurations are, under certain technical
conditions, critical points of the multicenter function Hsp.

5.2 DEPLOYMENT ALGORITHMS

In this section, we present algorithms that can be used by a robotic network
to achieve the various notions of deployment introduced in the previous
section. Throughout the discussion, we use the uniform networks SD and
SLD of locally connected first-order agents with the Delaunay and r-limited
Delaunay communication, respectively, introduced in Example 3.4, and the
uniform network Svehicles of planar vehicle robots with Delaunay commu-
nication introduced in Example 3.5. The networks SD and SLD evolve in
a polytope Q ⊂ Rd, while the network Svehicles evolves in a convex poly-
gon Q ⊂ R2. For all the laws presented in this chapter, we assume that no
two agents are initially at the same position, i.e., we assume that the initial
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network configuration always belongs to Qn \ Scoinc, where n denotes the
number of robots.

All the laws presented in this chapter share a similar structure, which we
loosely describe as follows:

[Informal description] In each communication round, each agent
performs the following tasks: (i) it transmits its position and
receives its neighbors’ positions; (ii) it computes a notion of the
geometric center of its own cell, determined according to some
notion of partition of the environment. Between communication
rounds, each robot moves toward this center.

The notions of geometric center and of partition of the environment are
different for each algorithm, and specifically tailored to the deployment task
at hand. Let us examine them for each case.

5.2.1 Geometric-center laws

We present control and communication laws defined on the network SD. All
the laws share in common the use of the notion of Voronoi partition of the
environment Q. We first introduce the Vrn-cntrd law, which makes use of
the notion of the centroid of a Voronoi cell. We then propose two sets of vari-
ations to this law. On the one hand, we present the Vrn-cntrd-dynmcs
law, which implements the same centroid strategy on a network of pla-
nar vehicles. On the other hand, we introduce the Vrn-crcmcntr and
Vrn-ncntr laws, which instead make use of the notions of the circumcen-
ter and incenter of a Voronoi cell, respectively.

5.2.1.1 Voronoi-centroid control and communication law

Here, we define the Vrn-cntrd control and communication law for the
network SD, which we denote by CCVrn-cntrd. This law was introduced
by Cortés et al. (2004). We formulate the algorithm using the description
model of Chapter 3. The law1 is uniform, static, and data-sampled, with

1From Definition 3.9 and Remark 3.11 recall that a control and coordination law (1) is uniform
if processor state set, message-generation, state-transition and control functions are the same for
each agent; (2) is static if the processor state set is a singleton, i.e., the law requires no memory;
(3) is data-sampled if if the control functions are independent of the current position of the robot
and depend only upon the robots position at the last sample time.
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standard message-generation function:

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CMφ(V ) − p

Recall that Hp,x is the half-space of points q in Rd with the property that
‖q−p‖2 ≤ ‖q−x‖2. Since the centroid of a Voronoi cell belongs to the interior
of the cell itself, if the robots are at distinct locations at any one time, then
they are at distinct locations after one step. Therefore, the set Qn \ Scoinc

is positively invariant with respect to the control and communication law
CCVrn-cntrd. Moreover, note that the direction of motion specified by the
control function ctl coincides with the gradient of the distortion multicenter
function Hdist. Hence, this law prescribes a gradient ascent strategy for each
robot that, as we will show later, monotonically optimizes Hdist.

5.2.1.2 Voronoi-centroid law on planar vehicles

Next, we provide an interesting variation of the Vrn-cntrd law defined
on the network Svehicles. Accordingly, we adopt the continuous-time motion
model for the unicycle vehicle:

ṗ[i](t) = v[i](t) (cos(θ[i](t)), sin(θ[i](t))),

θ̇[i](t) = ω[i](t), i ∈ {1, . . . , n}, (5.2.1)

where we assume that forward and angular velocities are upper bounded.
We refer to this control and communication law as the Vrn-cntrd-dynmcs
law, and we denote it by CCVrn-cntrd-dynmcs. The law was introduced
by Cortés et al. (2004) and is uniform and static, but not data-sampled:

Robotic Network: Svehicles with motion model (5.2.1) in Q,
with absolute sensing of own position

Distributed Algorithm: Vrn-cntrd-dynmcs
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Alphabet: A = R2 ∪{null}
function msg((p, θ), i)

1: return p

function ctl((p, θ), (psmpld, θsmpld), y)

1: V := Q ∩
(
⋂{Hpsmpld,prcvd

| for all non-null prcvd ∈ y}
)

2: v := kprop|(cos θ, sin θ) · (p− CMφ(V ))|
3: ω := 2kprop arctan

(− sin θ, cos θ) · (p− CMφ(V ))
(cos θ, sin θ) · (p− CMφ(V ))

4: return (v, ω)

This algorithm is illustrated in Figure 5.1.

Figure 5.1 An illustration of the execution of Vrn-cntrd-dynmcs. Each row of plots
represents an iteration of the law. In each round, each agent first computes its
Voronoi cell, then determines the centroid, and then moves towards it.

In the above description, we require the feedback gain kprop to belong
to the interval ]0, 1

max{π,diam(Q)} ]. This guarantees that the controls v, ω in

the definition of ctl belong to the closed interval [−1, 1], and are therefore,
implementable in the unicycle and the differential drive robot models.

The definition of the control function ctl is based on the stabilizing feed-
back law of Astolfi (1999). When following this control law, the robot posi-
tion p is guaranteed to monotonically approach the target position CMφ(V ).
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Unfortunately, it is a only conjecture that this controller (or an appropri-
ately modified controller) does not lead two agents to the same positions
(indeed, it is possible that an agent move outside its Voronoi cell). Under
this conjecture, the Vrn-cntrd-dynmcs law enjoys the same convergence
guarantees as the Vrn-cntrd law, that are described in Theorem 5.5.

Remark 5.1 (Vehicles with general dynamics). The general idea of
moving towards the centroid of a robot’s Voronoi region can be implemented
over a network of vehicles with arbitrary dynamics, as long as these vehicles
are capable of strictly decreasing the distance to any specified position in Q
in the time intervals between communication rounds while remaining inside
their Voronoi cells. •

5.2.1.3 Voronoi-circumcenter control and communication law

Here, we define the Vrn-crcmcntr control and communication law for the
network SD, which we denote by CCVrn-crcmcntr. This law was introduced
by Cortés and Bullo (2005). The law is uniform, static, and data-sampled,
with standard message-generation function:

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CC(V ) − p

Note that the circumcenter of a Voronoi cell belongs to the cell itself
and therefore, robots evolving under the control and communication law
CCVrn-crcmcntr never leave the set Q. However, in general the set Qn \Scoinc

is not positively invariant, see Exercise E5.1. From a geometric perspective,
this law makes sense as a strategy to optimize the disk-covering multicenter
function Hdc. From Section 2.1.3, for fixed V , the circumcenter location
minimizes the cost given by the maximum distance to all points in V . From
Section 2.3.2, Hdc can be expressed (2.3.12) as the maximum over the net-
work of each robot’s individual cost.
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5.2.1.4 Voronoi-incenter control and communication law

Here, we define the Vrn-ncntr control and communication law for the
network SD, which we denote by CCVrn-ncntr. This law was introduced
by Cortés and Bullo (2005). The law is uniform, static, and data-sampled,
with standard message-generation function:

Robotic Network: SD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position

Distributed Algorithm: Vrn-ncntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return x ∈ IC(V ) − p

Since the incenter set of a Voronoi cell belongs to the interior of the cell
itself, if the robots are at distinct locations at any one time, then they are
at distinct locations after one step. That is, the set Qn \ Scoinc is positively
invariant with respect to the control and communication law CCVrn-ncntr.
From a geometric perspective, this law makes sense as a strategy for op-
timizing the sphere-packing multicenter function Hsp. From Section 2.1.3,
for fixed V , the incenter locations maximize the cost given by the mini-
mum distance to the boundary of V . From Section 2.3.3, Hsp can be ex-
pressed (2.3.15) as the minimum over the network of each robot’s individual
cost.

Remark 5.2 (“Move-toward-furthest-vertex” and “away-from-clos-
est-neighbor” coordination algorithms). Consider the coordination al-
gorithm where, at each time step, each robot moves towards the furthest-
away vertex of its own Voronoi cell. Alternatively, consider the coordina-
tion algorithm where, at each time step, each robot moves away from its
closest neighbor. Both coordination algorithms define maps which depend
discontinuously on the robots’ positions. Cortés and Bullo (2005) study
the asymptotic behavior of these laws, and show that the “move-toward-
furthest-vertex” algorithm monotonically optimizes the multicenter function
Hdc, while the “away-from-closest-neighbor” algorithm monotonically opti-
mizes the multicenter function Hsp. •
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5.2.2 Geometric-center laws with range-limited interactions

In the following, we present two control and communication laws on the
network SLD. Both laws prescribe a geometric centering strategy for each
robot and accomplish specific forms of expected-value optimization. The
Lmtd-Vrn-nrml law optimizes the area multicenter function Harea, r

2
, while

the Lmtd-Vrn-cntrd law optimizes the mixed distortion-area multicenter
function Hdist-area, r

2
.

5.2.2.1 Limited-Voronoi-normal control and communication law

Here, we define the Lmtd-Vrn-nrml control and communication law for
the network SLD. This law was introduced by Cortés et al. (2005). The
Lmtd-Vrn-nrml law, which we denote by CCLmtd-Vrn-nrml, uses the notion
of r

2 -limited Voronoi partition inside Q. The law is uniform, static, and data-
sampled, with standard message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
with absolute sensing of own position, and
with communication range r, in Q

Distributed Algorithm: Lmtd-Vrn-nrml

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: v :=

∫

V ∩∂B(p, r

2
)
nout(q)φ(q)dq

3: λ∗ := max
{

λ
∣

∣ δ 7→
∫

V ∩B(p+δv, r

2
)
φ(q)dq is strictly increasing on [0, λ]

}

4: return λ∗v

In the above algorithm, nout denotes the outward normal vector to B(p, r
2).

Note that the direction of motion v specified by the control function ctl co-
incides with the gradient of the multicenter function Harea, r

2
. The parame-

ter λ∗ corresponds to performing a line search procedure along the direction
of the vector v.
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The control function has the property that the point p+ ctl(p, y) is guar-
anteed to be in the interior of V . This can be justified by noting that for
fixed V , the gradient of the function p →

∫

V ∩B(p, r

2
) φ(q)dq at points in the

boundary of V is non-vanishing and points toward the interior of V (cf.
Exercise E2.5). As a consequence, the line search procedure terminates be-
fore reaching the boundary of V . This discussion guarantees that the set
Qn \ Scoinc is positively invariant with respect to the control and communi-
cation law CCLmtd-Vrn-nrml.

5.2.2.2 Limited-Voronoi-centroid control and communication law

Here, we define the Lmtd-Vrn-cntrd control and communication law for
the network SLD. This law was introduced by Cortés et al. (2005). The
Lmtd-Vrn-cntrd law, which we denote by CCLmtd-Vrn-cntrd, uses the no-
tion of r

2 -limited Voronoi partition inside Q and of centroid of the individual
r
2 -limited Voronoi cells. The law is uniform, static, and data-sampled, with
standard message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
with absolute sensing of own position, and
with communication range r, in Q

Distributed Algorithm: Lmtd-Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩B(p, r
2) ∩

(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CMφ(V ) − p

The centroid of a r
2 -limited Voronoi cell belongs to the interior of the cell

itself, and this fact guarantees that the set Qn \Scoinc is positively invariant
with respect to the control and communication law CCLmtd-Vrn-cntrd. More-
over, note that the direction of motion specified by the control function ctl
coincides with the gradient of the multicenter function Hdist-area, r

2
.

Remark 5.3 (Relative sensing version). It is possible to implement the
limited-Voronoi-normal and limited-Voronoi-centroid laws as static relative-
sensing control laws on the relative-sensing network Srs

disk. This is a conse-
quence of the fact that the r-limited Delaunay graph is spatially distributed
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over the r-disk graph (cf., Theorem 2.7(iii)). Let us present one of these
examples for completeness:

Relative Sensing Network: Srs
disk with motion model (4.1.2)

in Q, no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

environment measurement is yenv = (Qε)i ∩B(0d, r)

Distributed Algorithm: relative-sensing Lmtd-Vrn-cntrd

function ctl(y, yenv)

1: V := yenv ∩B(0d,
r
2) ∩

(
⋂{H0d,psnsd

| for all non-null psnsd ∈ y}
)

2: return CMφ(V )

Note that only the positions of neighboring robots in the r-limited Delau-
nay graph have an effect on the computation of the set V . •

Remark 5.4 (Range-limited version of Vrn-cntrd). The Lmtd-Vrn-
nrml and Lmtd-Vrn-cntrd laws can be combined into a single control
and communication law to synthesize an algorithm that monotonically op-
timizes the function Hdist-area, r

2
,b, with b = −diam(Q)2. This law, which we

term Rng-Vrn-cntrd, is uniform, static, and data-sampled, with standard
message-generation function:

Robotic Network: SLD with discrete-time motion model (4.1.1)
in Q, with absolute sensing of own position, and
with communication range r

Distributed Algorithm: Rng-Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
(
⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: v1 := 2 Aφ(V ∩B(p, r
2))(CMφ(V ∩B(p, r

2)) − p)

3: v2 := (diam(Q)2 − r2

4 )

∫

V ∩∂B(p, r

2
)
nout(q)φ(q)dq

4: λ∗ := max
{

λ| δ 7→ HV (p+ δ(v1 + v2), B(p+ δ(v1 + v2),
r

2
))

is strictly increasing on (0, λ)
}

5: return λ∗(v1 + v2)
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In the above algorithm, nout denotes the outward normal vector to B(p, r
2)

and, for a point p ∈ V and a closed ball B centered at a point in V with
radius r

2 , HV is defined as

HV (p,B) = −
∫

V ∩B
‖q − p‖2

2φ(q)dq − diam(Q)2
∫

V ∩(Q\B)
φ(q)dq.

The Rng-Vrn-cntrd law is relevant because of the following discus-
sion. Recall from Proposition 2.17 that the general mixed distortion-area
multicenter function can be used to provide constant-factor approximations
of the distortion function Hdist. As we discussed in Section 2.3.1, robots
with range-limited interactions cannot implement Vrn-cntrd because, for
a given r ∈ R>0, GD is not in general spatially distributed over Gdisk(r)
(cf., Remark 2.10). However, robotic agents with range-limited interactions
can implement the computations involved in Lmtd-Vrn-nrml and Lmtd-
Vrn-cntrd, and hence can optimize Hdist-area, r

2
,b, with b = −diamQ2.

Assuming r ≤ 2 diam(Q), it is fair to say that the above algorithm can be
understood as a range-limited version of the Vrn-cntrd law. •

5.2.3 Correctness and complexity of geometric-center laws

In this section, we characterize the convergence and complexity properties
of the geometric-center laws. The asynchronous execution of the Voronoi-
centroid control and communication law can be studied as an asynchronous
gradient dynamical system (see Cortés et al., 2004).

The following theorem summarizes the results known in the literature
about the asymptotic properties of these laws.

Theorem 5.5 (Correctness of the geometric-center algorithms).
For d ∈ N, r ∈ R>0, and ε ∈ R>0, the following statements hold for any
execution that starts from an configuration in Qn \ Scoinc:

(i) On the network SD, the law CCVrn-cntrd achieves the ε-distortion
deployment task Tε-distor-dply. Moreover, any execution of the law
CCVrn-cntrd monotonically optimizes the multicenter function Hdist.

(ii) On the network SD, any execution of the law CCVrn-crcmcntr mono-
tonically optimizes the multicenter function Hdc.

(iii) On the network SD, any execution of the law CCVrn-ncntr monoton-
ically optimizes the multicenter function Hsp.

227

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

(iv) On the network SLD, the law CCLmtd-Vrn-nrml achieves the ε-r-area
deployment task Tε-r-area-dply. Moreover, any execution of the law
CCLmtd-Vrn-nrml monotonically optimizes the multicenter function
Harea, r

2
.

(v) On the network SLD, the law CCLmtd-Vrn-cntrd achieves the ε-r-
distortion-area deployment task Tε-r-distor-area-dply. Moreover, any
execution of CCLmtd-Vrn-cntrd monotonically optimizes the multi-
center function Hdist-area, r

2
.

The proof of this theorem is given in Section 5.5.1. The results on
CCVrn-cntrd appeared originally in Cortés et al. (2004). Note that an exe-
cution of CCVrn-cntrd can be viewed as an alternating sequence of config-
uration of points and partitions of the space, with the properties that (i)
each configuration of points corresponds to the set of centroid locations of
the immediately preceding partition in the sequence, and (ii) each partition
corresponds to the Voronoi partition determined by the immediately pre-
ceding configuration of points in the sequence. The monotonic behavior of
Hdist now follows from Propositions 2.13 and 2.14. Similar interpretations
can be given to all other laws. In particular, the monotonic behavior of Hdc

along executions of CCVrn-crcmcntr can be established via Proposition 2.19,
and the monotonic behavior of Hsp along executions of CCVrn-ncntr can be
established via Proposition 2.21. Continuous-time versions of these laws are
studied by Cortés and Bullo (2005) via nonsmooth stability analysis, where
the following convergence properties are established (recall the notion of
active and passive nodes introduced in Sections 2.3.2 and 2.3.3): all ac-
tive agents are guaranteed to asymptotically reach the circumcenter (resp.,
incenter) of their Voronoi region, whereas it is not known if the same con-
clusion holds for the passive agents. Depending on the polytope Q, there
exist circumcenter and incenter Voronoi configurations where not all agents
are active, and simulations show that in some cases the continuous-time
versions of CCVrn-crcmcntr and CCVrn-ncntr converge to them. It is an open
research question to show that CCVrn-crcmcntr and CCVrn-ncntr achieve the
ε-disk-covering deployment task Tε-dc-dply and the ε-sphere-packing deploy-
ment task Tε-sp-dply, respectively. Finally, the results on CCLmtd-Vrn-nrml

and CCLmtd-Vrn-cntrd appeared in Cortés et al. (2005).

Next, we analyze the time complexity of CCLmtd-Vrn-cntrd. We provide
complete results only for the case d = 1 and uniform density. We assume
that diam(Q) is independent of n, r, and ε.

Theorem 5.6 (Time complexity of Lmtd-Vrn-cntrd law). Assume
that the robots evolve in a closed interval Q ⊂ R, that is, d = 1, and assume
that the density is uniform, that is, φ ≡ 1. For r ∈ R>0 and ε ∈ R>0, on the
network SLD, TC(Tε-r-distor-area-dply, CCLmtd-Vrn-cntrd) ∈ O(n3 log(nε−1)).
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The proof of this result is given in Section 5.5.2 following the treatment
in Mart́ınez et al. (2007b).

Remark 5.7 (Congestion effects). Interestingly, Theorem 5.6 also holds
if, motivated by wireless congestion considerations, we take the communi-
cation range r to be a monotone non-increasing function r : N → ]0, 2π[ of
the number of robotic agents n. •

5.3 SIMULATION RESULTS

In this section, we illustrate the execution of the various control and com-
munication laws introduced in this chapter.

Geometric-center algorithms for expected-value optimization

The Vrn-cntrd, Lmtd-Vrn-nrml, and Lmtd-Vrn-cntrd control and
communication laws are implemented in MathematicaR© as a library of rou-
tines and a main program running the simulation. The objective of a first
routine is to compute the r

2 -limited Voronoi partition and parameterize each
cell Vi, r

2
, i ∈ {1, . . . , n} in polar coordinates. The objective of a second rou-

tine is to compute the surface integrals on these sets and the line integrals
on their boundaries via the numerical integration routine NIntegrate. We
pay careful attention to numerical accuracy issues in the computation of the
Voronoi diagram and in the integration.

Measuring displacements in meters, we consider the polygonQ determined
by the vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6),

(2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.
The diameter of Q is diam(Q) ≈ 3.378. In all figures, the density function φ
is the sum of four Gaussian functions of the form 11 exp(6(−(x−xcenter)

2 −
(y − ycenter)

2)) and is represented by means of its contour plot. Darker-
colored areas correspond to higher values of the density function. The four
centers (xcenter, ycenter) of the Gaussian functions are the points (2.15, 0.75),
(1.0, 0.25), (0.725, 1.75) and (0.25, 0.7), respectively. The area of the polygon
is Aφ(Q) = 17.6352.

We show evolutions of (SD,Vrn-cntrd) and (SD,Vrn-cntrd-dynmcs)
in Figures 5.2 and 5.3, respectively. One can verify that the final network
configurations is a centroidal Voronoi configuration. In other words, the
task Tε-distor-dply is achieved, as guaranteed by Theorem 5.5(i) for the Vrn-
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cntrd algorithm. For each evolution we depict the initial positions, the
trajectories, and the final positions of all robots.

Figure 5.2 The evolution of (SD,Vrn-cntrd) with n = 20 robots. The left-hand (resp.,
right-hand) figure illustrates the initial (resp., final) locations and Voronoi par-
tition. The central figure illustrates the evolution of the robots. After 13 sec-
onds, the value of Hdist has monotonically increased to approximately −0.515.

Figure 5.3 The evolution of (SD,Vrn-cntrd-dynmcs) with n = 20 robots and with feed-
back gain kprop = 3.5. The left-hand (resp., right-hand) figure illustrates the
initial (resp., final) locations and Voronoi partition. The central figure illus-
trates the evolution of the robots. After 20 seconds, the value of Hdist has
monotonically increased to approximately −0.555.

We show an evolution of (SLD,Lmtd-Vrn-nrml) in Figure 5.4. One
can verify that the final network configuration is an r

2 -limited area-centered
Voronoi configuration. In other words, the task Tε-r-area-dply is achieved, as
guaranteed by Theorem 5.5(ii).

Figure 5.4 The evolution of (SLD,Lmtd-Vrn-nrml) with n = 20 robots and r = 0.4. The
left-hand (resp., right-hand) figure illustrates the initial (respectively, final)
locations and Voronoi partition. The central figure illustrates the evolution
of the robots. The r

2
-limited Voronoi cell of each robot is plotted in light

gray. After 36 seconds, the value of Harea, r
2

has monotonically increased to
approximately 14.141.
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We show an evolution of (SLD,Lmtd-Vrn-cntrd) in Figure 5.5. One can
verify that the final network configuration is a r

2 -limited centroidal Voronoi
configuration. In other words, the task Tε-r-distor-area-dply is achieved, as
guaranteed by Theorem 5.5(iii).

Figure 5.5 The evolution of (SLD,Lmtd-Vrn-cntrd) with n = 20 robots and r = 0.4.
The left-hand (resp., right-hand) figure illustrates the initial (resp., final) lo-
cations and Voronoi partition. The central figure illustrates the evolution of
the robots. The r

2
-limited Voronoi cell of each robot is plotted in light gray.

After 90 seconds, the value of Hdist-area, r
2

reaches approximately −0.386.

We show an evolution of (SLD,Rng-Vrn-cntrd) in Figure 5.6. One can
verify that the final network configuration corresponds to a critical point
of the mixed distortion-area multicenter function Hdist-area, r

2
,b, with b =

−diam(Q)2, (see Exercise E5.4).

Figure 5.6 The evolution of (SLD,Rng-Vrn-cntrd) with n = 20 robots and r = 0.47.
The left-hand (resp., right-hand) figure illustrates the initial (respectively, fi-
nal) locations and Voronoi partition. The central figure illustrates the evolu-
tion of the robots. The r

2
-limited Voronoi cell of each robot is plotted in light

gray. After 13 seconds, the value of Hdist-area, r
2

,b, with b = − diam(Q)2, is
approximately −4.794.

As discussed in Remark 5.4, Rng-Vrn-cntrd can be understood as a
range-limited implementation of Vrn-cntrd in a network of robots with
range-limited interactions. Let us briefly compare the evolutions depicted
in Figures 5.2 and 5.6. According to Proposition 2.17, we compute

β =
r
2

diamQ
≈ 0.06957.
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From the constant-factor approximation (2.3.7), the absolute error is guar-
anteed to be less than or equal to (β2 − 1)Hdist-area, r

2
,b(Pfinal) ≈ 4.77, where

Pfinal denotes the final configuration in Figure 5.6. The percentage error in
the value of the multicenter function Hdist between the final configuration
of the evolution in Figure 5.2 and the final configuration of the evolution in
Figure 5.6 is approximately equal to 3.277%. As expected, one can verify in
simulations that the percentage error of the performance of the range-limited
implementation improves with higher values of the ratio r

diam Q .

Geometric-center algorithms for disk-covering and sphere-packing

The Vrn-crcmcntr and Vrn-ncntr control and communication laws are
implemented in MathematicaR© as a single centralized program running the
simulation. We compute the bounded Voronoi diagram of a collection of
points using the package ComputationalGeometry. We compute the cir-
cumcenter of a polygon via the algorithm in Skyum (1991) and the incenter
set via the LinearProgramming solver in MathematicaR©.

Measuring displacements in meters, we consider the polygon determined
by the vertices

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6),

(3.45, 1.7), (2.7, 2.1), (1.0, 2.4), (0.2, 1.2)}.
We show an evolution of (SD,Vrn-crcmcntr) in Figure 5.7. One can
verify that in the final configuration all robots are at the circumcenter of
their own Voronoi cell. In other words, the task Tε-dc-dply is achieved by this
evolution. As stated in Section 5.2.3, it is an open research question to show
that this fact holds in general for CCVrn-crcmcntr. Cortés and Bullo (2005)
prove a similar result for a continuous-time implementation of this law.

Figure 5.7 The evolution of (SD,Vrn-crcmcntr) with n = 16 robots. The left-hand
(resp., right-hand) figure illustrates the initial (resp., final) locations and
Voronoi partition. The central figure illustrates the evolution of the robots. Af-
ter 20 seconds, the value of Hdc has monotonically decreased to approximately
0.43273 meters.
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We show an evolution of (SD,Vrn-ncntr) in Figure 5.8. One can verify
that in the final configuration all robots are at the incenter of their own
Voronoi cell. In other words, the task Tε-sp-dply is achieved by this evolution.
As stated in Section 5.2.3, it is an open research question to show that this
fact holds in general for CCVrn-ncntr. Cortés and Bullo (2005) prove a similar
result for a continuous-time implementation of this law.

Figure 5.8 The evolution of (SD,Vrn-ncntr) with n = 16 robots. The left-hand (resp.,
right-hand) figure illustrates the initial (resp., final) locations and Voronoi
partition. The central figure illustrates the evolution of the robots. After 20
seconds, the value of Hsp has monotonically increased to approximately 0.2498
meters.

5.4 NOTES

The deployment problem studied in this chapter is related to the literature
on facility location (Drezner, 1995; Okabe et al., 2000; Du et al., 1999) and
geometric optimization (Agarwal and Sharir, 1998; Boltyanski et al., 1999)
(see also Section 2.4). These disciplines study spatial resource allocation
problems and play an important role in quantization theory, mesh and grid
optimization methods, clustering analysis, data compression, and statistical
pattern recognition.

Dispersion laws have been traditionally studied in behavior control (see,
e.g., (Arkin, 1998; Schultz and Parker, 2002; Balch and Parker, 2002)). De-
ployment algorithms that make use of potential field methods are proposed
by Payton et al. (2001) and Howard et al. (2002). Other works include
(Bulusu et al., 2001) on adaptive beacon placement for localization, Poduri
and Sukhatme (2004) on network deployments that satisfy a pre-specified
constraint in the number of neighbors of each robot, Arsie et al. (2009) on
sensor-based deployment strategies that minimize the expected service time
for newly appearing target points, and Hussein and Stipanovic̀ (2007) on
dynamically surveying a known environment.

Deployment algorithms for coverage control are a subject of active re-
search. Among the most recent works, Mart́ınez (2009a) and Schwager
et al. (2009) consider coverage problems where the density function is un-
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known, Lekien and Leonard (2009) propose centralized laws for non-uniform
coverage using cartograms, de Silva and Ghrist (2007) study static coverage
problems with minimal assumptions on the capabilities of individual sensors
using algebraic topology, Kwok and Mart́ınez (2009) propose distributed de-
ployment strategies for energy-constrained networks, Laventall and Cortés
(2009) design distributed algorithms for networks of robots whose sensors
have range-limited wedge-shaped footprints, Gao et al. (2008) consider dis-
crete coverage problems, Schwager et al. (2008) consider joint exploration
and deployment problems, and Zhong and Cassandras (2008), Pimenta et al.
(2008), and Caicedo-Nùñez and Žefran (2008) deal with centroidal Voronoi
tessellations in nonconvex environments. Graham and Cortés (2009) study
the optimality of circumcenter and incenter Voronoi configurations for the
estimation of stochastic spatial fields. Susca et al. (2009) consider some
planar interpolation problems.

Deployment problems play a relevant role in other coordination tasks,
such as surveillance, search and rescue, and exploration and map building
of unknown environments. Choset (2001) considers sweep coverage problems,
where one or more robots equipped with limited footprint sensors have to
visit all points in the environment. In Simmons et al. (2000), deployment
locations for a network of heterogeneous robots are user-specified after an
initial map of the unknown environment has been built. Gupta et al. (2006a)
consider a combined sensor coverage and selection problem.

Deployment of robotic agents with visibility sensors has been studied un-
der a variety of assumptions. When the environment is known a priori, the
problem can be cast as the classical Art Gallery Problem (Chvátal, 1975)
from computational geometry, where one is interested in achieving complete
visibility with the minimum number of agents possible. The Art Gallery
Problem is computationally hard (Lee and Lin, 1986; Eidenbenz et al., 2001)
and the best-known approximation algorithms yield solutions within a log-
arithmic factor of the optimum number of agents (Ghosh, 1987; Efrat and
Har-Peled, 2006). Pinciu (2003) and Hernández-Peñalver (1994) study the
problem of achieving full visibility while guaranteeing that the final network
configuration will have a connected visibility graph. Recent works on multi-
robot exploration of unknown environments include (Batalin and Sukhatme,
2004), Burgard et al. (2005), and Howard et al. (2006). Topological explo-
ration of graph-like environments by single and multiple robots is studied
in Rekleitis et al. (2001), Fraigniaud et al. (2004), and Dynia et al. (2006).
A simple one-step strategy for visibility deployment, without the need for
synchronization, achieving the worst-case optimal bounds in terms of the
number of robots required, and under limited communication, is presented
in Ganguli et al. (2007).
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5.5 PROOFS

This section gathers the proofs of the main results presented in the chapter.

5.5.1 Proof of Theorem 5.5

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ Qn \ Scoinc denote the initial con-
dition. The proof strategy for all five facts is similar and is based on the
application of the LaSalle Invariance Principle with Lyapunov function given
by an appropriate multicenter function. In other words, we need to estab-
lish the monotonic behavior of the certain multicenter functions along the
executions of the control and communication laws and we need to charac-
terize certain invariant sets using geometric properties of the multicenter
functions. Additionally, in order to apply the LaSalle Invariance Principle,
we need to work with the set Qn \ Scoinc which is not closed and, therefore,
we rely upon the extension of Theorem 1.19 given in Exercise E1.8(ii).

In what follows, we discuss in detail the proof of fact (i) regarding the
control and communication law CCVrn-cntrd for the network SD. We leave
it to the reader to fill out some of the proof details for the other laws.

Fact (i). First, note that, starting from a configuration in Qn \ Scoinc,
one step of the law CCVrn-cntrd leads the network to another configuration
in Qn \ Scoinc. Therefore, it is convenient to let fVrn-cntrd : Qn \ Scoinc →
Qn\Scoinc denote the map induced by the execution of one step of the control
and communication law CCVrn-cntrd.

To apply Theorem 1.19, we work with the set W = Qn \ Scoinc. Clearly,
this set is positively invariant for fVrn-cntrd and it is bounded. Therefore,
assumptions (i) and (iii) of Theorem 1.19 are satisfied, except for the closed-
ness of W . Next, we show that executions of the law CCVrn-cntrd monoton-
ically optimize the function Hdist. Using the extension of the multicenter
function defined over the set of points and partitions of Q, we deduce from
Proposition 2.13 that, for P ∈ Qn \ Scoinc,

Hdist(fVrn-cntrd(P )) = Hdist(fVrn-cntrd(P ),V(fVrn-cntrd(P )))

≥ Hdist(fVrn-cntrd(P ),V(P )).

The application of Proposition 2.14 yields

Hdist(fVrn-cntrd(P ),V(P )) ≥ Hdist(P,V(P )),

and, therefore, Hdist(fVrn-cntrd(P )) ≥ Hdist(P ). Additionally, recall from
Proposition 2.14, that, for P ∈ Qn \ Scoinc, the inequality is strict unless
fVrn-cntrd(P ) = P . This discussion establishes assumption (ii) of Theo-
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rem 1.19. The continuity of the map fVrn-cntrd : Qn \ Scoinc → Qn \ Scoinc,
is a consequence of the following two facts. First, one can verify that each
Voronoi cell is a convex set whose boundary is a piecewise continuously dif-
ferentiable function of the positions of the robots. Second, given a convex set
whose boundary depends upon a parameter in a piecewise continuously dif-
ferentiable fashion, Proposition 2.23 guarantees that the centroid of that set
is a continuously differentiable function of the parameter. This discussion
and the continuity of Hdist establishes assumption (iv) of Theorem 1.19.

In the following, we consider an evolution γ : Z≥0 → Qn \ Scoinc of
fVrn-cntrd and we prove that no point in Scoinc may be an accumulation
point of γ. By contradiction, we assume that P = (p1, . . . , pn) ∈ Scoinc

is an accumulation point for γ. Our first claim is that there exists a se-
quence of increasing times {ℓk | k ∈ N} and unit-length vectors uij ∈ Rd,
for i, j ∈ {1, . . . , n}, such that γ(ℓk) → P and simultaneously vers(γi(ℓk) −
γj(ℓk)) → uij as k → ∞. Here, the versor operator vers : Rd → Rd is
defined by vers(0d) = 0d and vers(v) = v/‖v‖2 for v 6= 0d. This first
claim is true because P is an accumulation point and because the sequences
ℓ 7→ vers(γi(ℓ)−γj(ℓ)) take value in a compact set. Our second claim is that,
as k → ∞, the sequence of partitions V(γ(ℓk)) has a limiting partition, say
{V∞

1 , . . . , V∞
n }. This second claim is true because, for each pair of robots i

and j converging to the same position pi = pj , the bisector of the segment
connecting them admits a limit that is equal to the line through the point
pi = pj and perpendicular to the unit-length vector uij . Therefore, each of
the edges of each of the polygons V(γ(ℓk)) has a limit for k → ∞. Finally,
note that each polygon V∞

i has a positive measure.

We know that ℓ 7→ Hdist(γ(ℓ)) is monotonically non-increasing and lower-
bounded. Therefore, we must have that

lim
ℓ→∞

(

Hdist(γ(ℓ)) −Hdist(γ(ℓ+ 1))
)

= 0. (5.5.1)

Define the short-hand Wk,1 = V1(γ(ℓk)), and compute

lim
k→∞

(

Hdist(γ(ℓk)) −Hdist(γ(ℓk + 1))
)

≥ lim
k→∞

(

∫

Wk,1

‖q − γ1(ℓk)‖2
2φ(q)dq −

∫

Wk,1

‖q − CMφ(Wk,1)‖2
2φ(q)dq

)

(5.5.2)

=

∫

V ∞
1

‖q − p1‖2
2φ(q)dq −

∫

V ∞
1

‖q − CMφ(V∞
1 )‖2

2φ(q)dq (5.5.3)

= Aφ(V∞
1 )‖p1 − CMφ(V∞

1 )‖2, (5.5.4)

where inequality (5.5.2) follows from Proposition 2.14, equality (5.5.3) fol-
lows from the definition of the limiting partition {V∞

1 , . . . , V∞
n }, and equa-
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tion (5.5.4) follows from the Parallel Axis Theorem. Now, the quantity
Aφ(V∞

1 ) is strictly positive, as mentioned above, and the quantity ‖p1 −
CMφ(V∞

1 )‖2 is strictly positive because p1 ∈ ∂V∞
1 and CMφ(V∞

1 ) belongs
to the interior of V∞

1 by Exercise (E2.2). The fact that the last limit is lower
bounded by a positive is a contradiction with equation (5.5.1). Therefore,
we now know that no point in Scoinc may be an accumulation point of γ.

Finally, we are now ready to apply the LaSalle Invariance Principle as
stated in Exercise E1.8(ii) and deduce that the execution of CCVrn-cntrd

starting from P0 ∈ Qn \ Scoinc tends to the largest positively invariant set S
contained in

{P ∈ Qn | Hdist(fVrn-cntrd(P )) = Hdist(P )}.
The set S is precisely the set of centroidal Voronoi configurations. This result
is a consequence of the fact that Hdist(fVrn-cntrd(P )) = Hdist(P ) implies
that fVrn-cntrd(P ) = P , that is, P is a centroidal Voronoi configuration.

Facts (ii) and (iii). The proofs of these facts run parallel to the proof of
fact (i). Propositions 2.19 and 2.21 are key in establishing the monotonic
evolution of Hdc and Hsp, respectively.

Fact (iv). Let fLmtd-Vrn-nrml : Qn \ Scoinc → Qn \ Scoinc denote the map
induced by the execution of one step of the law CCLmtd-Vrn-nrml. Let us
show that executions of CCLmtd-Vrn-nrml monotonically optimize the func-
tion Harea, r

2
. Using the extension of the multicenter function defined over

the set of points and partitions of Q, we deduce from Proposition 2.13 that,
for P ∈ Qn \ Scoinc,

Harea, r

2
(fLmtd-Vrn-nrml(P ))

= Harea, r

2
(fLmtd-Vrn-nrml(P ),V(fLmtd-Vrn-nrml(P )))

≥ Harea, r

2
(fLmtd-Vrn-nrml(P ),V(P )).

The line search procedure for each robot embedded in the definition of the
control function of CCLmtd-Vrn-nrml ensures that

Harea, r

2
(fLmtd-Vrn-nrml(P ),V(P )) ≥ Harea, r

2
(P,V(P )),

and hence, Harea, r

2
(fLmtd-Vrn-nrml(P )) ≥ Harea, r

2
(P ). Note that the in-

equality is strict unless fLmtd-Vrn-nrml(P ) = P . We leave it to the in-
terested reader to prove, similarly to what we did for fact (i), that the map
fLmtd-Vrn-nrml is continuous and that no point in Scoinc may be an accumu-
lation point of any trajectory of fLmtd-Vrn-nrml. Finally, the application of
the LaSalle Invariance Principle as in the proof of fact (i) leads us to the
result stated in fact (iv).

Fact (v). The proof of this fact runs parallel to the proofs of facts (i)
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and (iv). Propositions 2.13 and 2.15 are key in establishing the monotonic
evolution of the cost function Hdist-area, r

2
. �

5.5.2 Proof of Theorem 5.6

Proof. For d = 1, Q is a compact interval on R—say Q = [q−, q+]. We start
with a brief discussion about connectivity. In the r-limited Delaunay graph,
two agents that are at most at a distance r from each other are neighbors if
and only if there are no other agents between them. Additionally, we claim
that if agents i and j are neighbors, then |CMφ(V [i])−CMφ(V [j])| ≤ r, where

V [i] denotes the set defined by the control function ctl when evaluated by
agent i. To show this fact, let us assume without loss of generality that
p[i] ≤ p[j]. Let us consider the case where the agents have neighbors on

both sides (the other cases can be treated analogously). Let p
[i]
− (resp., p

[j]
+ )

denote the position of the neighbor of agent i to the left (resp., of agent j
to the right). Now,

CMφ(V [i]) =
1

4
(p

[i]
− + 2p[i] + p[j]),

CMφ(V [j]) =
1

4
(p[i] + 2p[j] + p

[j]
+ ),

where we have used the fact that φ ≡ 1. Therefore,

|CMφ(V [i]) − CMφ(V [j])| ≤ 1

4

(

|p[i]
− − p[i]| + 2|p[i] − p[j]| + |p[j] − p

[j]
+ |

)

≤ r.

This implies that agents i and j belong to the same connected component
of the r-limited Delaunay graph at the next time step.

Next, let us consider the case when GLD(r) is connected at the initial
network configuration P0 = (p[1](0), . . . , p[n](0)). Without loss of generality,
assume that the agents are ordered from left to right according to their
unique identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). We distinguish three cases
depending on the proximity of the leftmost and rightmost agents 1 and n,
respectively, to the boundary of the environment: in case (a) both agents
are within a distance r

2 of ∂Q; in case (b), neither of the two is within a
distance r

2 of ∂Q; and in case (c) only one of the agents is within a distance r
2

of ∂Q. Here is an important observation: from one time instant to the next,
the network configuration can fall into any of the cases described above.
However, because of the discussion on connectivity, transitions can only
occur from case (b) to either case (a) or case (c); and from case (c) to case
(a). As we show below, for each of these cases, the network evolution under
CCVrn-cntrd can be described as a discrete-time linear dynamical system
which respects agents’ ordering.
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Let us consider case (a). In this case, we have

p[1](ℓ+ 1) =
1

4
(p[1](ℓ) + p[2](ℓ)) +

1

2
q−,

p[2](ℓ+ 1) =
1

4
(p[1](ℓ) + 2p[2](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ+ 1) =
1

4
(p[n−2](ℓ) + 2p[n−1](ℓ) + p[n](ℓ)),

p[n](ℓ+ 1) =
1

4
(p[n−1](ℓ) + p[n](ℓ)) +

1

2
q+.

Equivalently, we can write P (ℓ + 1) = A(a) · P (ℓ) + b(a), where the matrix

A(a) ∈ Rn×n and the vector b(a) ∈ Rn are given by

A(a) =



















1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

1
4



















, b(a) =















1
2q−
0
...
0

1
2q+















.

Note that the only equilibrium network configuration P∗ respecting the or-
dering of the agents is given by

p
[i]
∗ = q− +

1

2n
(1 + 2(i− 1))(q+ − q−) , i ∈ {1, . . . , n},

and note that this is a r
2 -centroidal Voronoi configuration (under the as-

sumption of case (a)). We can therefore write (P (ℓ+1)−P∗) = A(a)(P (ℓ)−
P∗). Now, note that A(a) = ATrid−

n

(

1
4 ,

1
2

)

. Theorem 1.80(ii) implies that

limℓ→+∞
(

P (ℓ)−P∗
)

= 0n, and that the maximum time required for ‖P (ℓ)−
P∗

∥

∥

2
≤ ε‖P0 − P∗‖2 (over all initial conditions in Rn) is Θ

(

n2 log ε−1
)

. It is
not obvious, but it can be verified, that the initial condition providing the
lower bound in the time complexity estimate does indeed have the property
of respecting the agents’ ordering; this fact holds for all three possible cases
(a), (b), and (c).

Case (b) can be treated in the same way. The network evolution now
takes the form P (ℓ+ 1) = A(b) · P (ℓ) + b(b), where the matrix A(b) ∈ Rn×n
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and the vector b(b) ∈ Rn are given by

A(b) =



















3
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4



















, b(b) =















−1
4r
0
...
0
1
4r















.

In this case, a (non-unique) equilibrium network configuration respecting
the ordering of the agents is of the form

p
[i]
∗ = ir − 1 + n

2
r, i ∈ {1, . . . , n}.

Note that this is a r
2 -centroidal Voronoi configuration (under the assump-

tion of case (b)). We can therefore write (P (ℓ + 1) − P∗) = A(b)(P (ℓ) −
P∗). Now, observe that A(b) = ATrid+

n

(

1
4 ,

1
2

)

. We compute that Pave =
1
n1T

n (P0 − P∗) = 1
n1T

nP0. With this calculation, Theorem 1.80(i) implies

that limℓ→+∞
(

P (ℓ) − P∗ − Pave1n

)

= 0n, and that the maximum time re-

quired for ‖P (ℓ) − P∗ − Pave1n

∥

∥

2
≤ ε‖P0 − P∗ − Pave1n‖2 (over all initial

conditions in Rn) is Θ
(

n2 log ε−1
)

.

Case (c) needs to be handled differently. Without loss of generality, as-
sume that agent 1 is within distance r

2 of ∂Q and agent n is not (the other
case is treated analogously). Then, the network evolution now takes the
form P (ℓ + 1) = A(c) · P (ℓ) + b(c), where the matrix A(c) ∈ Rn×n and the
vector b(c) ∈ Rn are given by

A(c) =



















1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4



















, b(c) =















1
2q−
0
...
0
1
4r















.

Note that the only equilibrium network configuration P∗ respecting the or-
dering of the agents is given by

p
[i]
∗ = q− +

1

2
(2i− 1)r, i ∈ {1, . . . , n},

and note that this is a r
2 -centroidal Voronoi configuration (under the as-

sumption of case (c)). In order to analyze A(c), we recast the n-dimensional
discrete-time dynamical system as a 2n-dimensional one. To do this, we
define a 2n-dimensional vector y by

y[i] = p[i], i ∈ {1, . . . , n}, and y[n+i] = p[n−i+1], i ∈ {1, . . . , n}. (5.5.5)
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Now, one can see that the network evolution can be alternatively described
in the variables (y[1], . . . , y[2n]) as a linear dynamical system determined by
the 2n × 2n matrix ATrid−

2n(1
4 ,

1
2). Using Theorem 1.80(ii), and exploiting

the chain of equalities (5.5.5), it is possible to infer that, in case (c), the
maximum time required for ‖P (ℓ) − P∗

∥

∥

2
≤ ε‖P0 − P∗‖2 (over all initial

conditions in Rn) is Θ
(

n2 log ε−1
)

.

In summary, for all three cases (a), (b), and (c), our calculations show
that, in time O

(

n2 log ε−1
)

, the error 2-norm satisfies the contraction in-

equality ‖P (ℓ) − P∗
∥

∥

2
≤ ε‖P0 − P∗‖2. We convert this inequality on 2-

norms into an appropriate inequality on ∞-norms as follows. Note that

‖P0 − P∗‖∞ = maxi∈{1,...,n} |p[i](0) − p
[i]
∗ | ≤ (q+ − q−). For ℓ of order

n2 log η−1, we have that

‖P (ℓ) − P∗‖∞ ≤ ‖P (ℓ) − P∗‖2 ≤ η‖P0 − P∗‖2

≤ η
√
n‖P0 − P∗‖∞ ≤ η

√
n(q+ − q−).

This means that ε-r-deployment is achieved for η
√
n(q+ − q−) = ε, that is,

in time O(n2 log η−1) = O(n2 log(nε−1)).

Up to here, we have proved that if the graph GLD(r) is connected at
P0, then TC(Tε-r-dply, CCVrn-cntrd, P0) ∈ O(n2 log(nε−1)). If GLD(r) is not
connected at P0, note that along the network evolution there can only be
a finite number of time instants, at most n − 1 where a merging of two
connected components occurs. Therefore, the time complexity is at most
O(n3 log(nε−1)), as claimed. �

5.6 EXERCISES

E5.1 (The Vrn-crcmcntr law is not positively invariant on Qn\Scoinc). Consider
the network SD composed by 2 robots evolving in the convex polygon depicted in
Figure E5.1. Describe the evolution of the network starting from the configuration

Figure E5.1 Convex polygon for Exercise E5.1. The height of the polygon is strictly less
that its width.

depicted in Figure E5.1 and discuss its implication on the positive invariance of
the set Q2 \ Scoinc with respect to CCVrn-crcmcntr.

E5.2 (Monotonic evolution of Hdc and Hsp). Prove the facts relative to statements
(ii) and (iii) in Theorem 5.5.
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Hint: Make use of the optimality of the Voronoi partition and of center locations
stated in Propositions 2.19 and 2.21.

E5.3 (Correctness of Lmtd-Vrn-cntrd). Prove Theorem 5.5(v).
Hint: To establish the monotonic evolution of the multicenter function, make use
of the optimality of the Voronoi partition stated in Proposition 2.13 and of the
centroid locations stated in Proposition 2.15. To establish the convergence result,
make use of the LaSalle Invariance Principle stated in Theorem 1.19.

E5.4 (Correctness of Rng-Vrn-cntrd). Mimic the proof of Theorem 5.5(iv) to
show that the evolutions of Rng-Vrn-cntrd monotonically optimize the mixed
distortion-area multicenter function

Hdist-area, r
2

,b, with b = − diam(Q)2,

and asymptotically approach its set of critical points.

E5.5 (The “n-bugs problem” and cyclic interactions: cont’d). Consider n
robots at counterclockwise-ordered positions θ1, . . . , θn. First, consider the cyclic
balancing system described in Exercise E1.30 with parameter k = 1/4, and given
by

θi(ℓ + 1) =
1

4
θi+1(ℓ) +

1

2
θi(ℓ) +

1

4
θi−1(ℓ), ℓ ∈ Z≥0.

Second, consider the Voronoi-centroid law on the circle (with uniform density) in
which each robot computes its Voronoi partition of the circle (see Figure 2.5) and
then moves to the midpoint of its arc. Show that the two behaviors are identical.
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Chapter Six

Boundary estimation and tracking

The aim of this chapter is to provide an example of a motion coordination
algorithm that can be used in a specific sensing task. This is the task of
detection and estimation of an evolving boundary in two dimensions by a
robotic sensor network. This type of operation can be of interest in the
validation of oceanographic and atmospheric models, as well as for the de-
marcation of hazardous environments. In the ocean, a boundary can delimit
areas where there are abrupt changes in temperature, which can influence
the marine biodiversity in those areas. In the atmosphere, a boundary can
establish the front of a highly polluting expanding substance. The con-
tainment of a spreading fire is another situation that can translate into the
specific task of boundary estimation and tracking.

Under full knowledge and centralized computation, various methods exist
in the literature to solve the boundary estimation task. A first challenge
that we face when designing coordination algorithms for robotic networks is
the determination of the extent to which these tasks can be performed in a
distributed way and under limited information. In this regard, the algorithm
presented in this chapter to track environmental boundaries is distributed,
in the sense that it does not require the use of a central station or “fusion
center.” Our algorithm builds on basic notions from interpolation theory
and employs distributed linear iterations and consensus algorithms. The
algorithm can be seen as part of a general effort to investigate distributed
filters for estimation tasks.

A second challenge is posed by sudden events that may occur when per-
forming sensing tasks, such as the detection of an intruder or an abrupt
change in the concentration of some chemical. These events require a spe-
cific action on the part of the network. Since the timing of such events is
not known a priori, this requires coordination algorithms that specify event-
driven, asynchronous responses of the robotic network. We deal with this
issue by building on the robotic network model proposed in Chapter 3. Our
exposition here on boundary estimation relies on Susca (2007) and Susca
et al. (2008).
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The chapter is organized as follows. The first section extends the syn-
chronous model proposed in Chapter 3 to include the event-driven, asyn-
chronous operation of a robotic network. The second section reviews some
basic facts on interpolation theory for boundaries. In the third section,
we introduce the Estimate Update and Balancing Law to solve the
boundary estimation task and analyzes its correctness. We end the chap-
ter with three sections on, respectively, bibliographic notes, proofs of the
results presented in the chapter, and exercises. Throughout the exposition,
we make extensive use of polygonal approximations, geometric decomposi-
tions, and consensus algorithms. The convergence analysis is based on the
LaSalle Invariance Principle and on distributed linear iterations.

6.1 EVENT-DRIVEN ASYNCHRONOUS ROBOTIC NETWORKS

In what follows, we model “event-driven asynchronous” robotic networks.
This model describes groups of agents that reset their processor states upon
certain asynchronous events, that is, events that do not necessarily happen
simultaneously for all agents. For example, a relevant event might be a robot
reaching a location or leaving a region. The following event-driven model is
convenient to describe our algorithm for boundary estimation, but its appli-
cability extends beyond this particular scenario. Following our discussion of
synchronous robotic networks in Section 3.1, the event-driven model consists
of the following ingredients: a robotic network, as in Definition 3.2, and an
event-driven control and communication law, as defined next.

Definition 6.1 (Event-driven control and communication law). An
event-driven control and communication law ECC for a robotic network S
consists of the following sets:

(i) A, a set containing the null element, called the communication
alphabet—elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets; and

(iii) W
[i]
0 ⊆W [i], i ∈ I, sets of allowable initial values;

and the following maps:

(i) (msg-trig[i],msg-gen[i],msg-rec[i]), i ∈ I, called the message-trigger
function, message-generation function, and message-reception func-
tion, respectively, such that

(a) msg-trig[i] : X [i] ×W [i] → {true, false},
(b) msg-gen[i] : X [i] ×W [i] × I → A,

(c) msg-rec[i] : X [i] ×W [i] × A × I →W [i];
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(ii) (stf-trig
[i]
k , stf

[i]
k ), i ∈ I, k ∈ {1, . . . ,K [i]

stf}, called the kth state-

transition trigger function and the kth (processor) state-transition
function, respectively, such that

(a) stf-trig
[i]
k : X [i] ×W [i] → {true, false},

(b) stf
[i]
k : X [i] ×W [i] →W [i]; and

(iii) ctl[i] : X [i] ×W [i] → U [i], i ∈ I, called (motion) control functions.

If the network S is uniform and all sets and maps of the law ECC are inde-

pendent of the identifier, that is, for all i ∈ I and k ∈ {1, . . . ,Kstf = K
[i]
stf},

W [i] = W, (stf-trig
[i]
k , stf

[i]
k ) = (stf-trigk, stfk), ctl

[i] = ctl,

(msg-trig[i],msg-gen[i],msg-rec[i]) = (msg-trig,msg-gen,msg-rec),

then ECC is said to be uniform and is described by the tuple

(A,W, {W [i]
0 }i∈I , (msg-trig,msg-gen,msg-rec), {stf-trigk, stfk}Kstf

k=1, ctl). •

Observe that a key difference between Definitions 3.9 and 6.1 is that the
message-generation and state-transition functions are substituted by sets

of maps (msg-trig[i],msg-gen[i],msg-rec[i]) and (stf-trig
[i]
k , stf

[i]
k ). A second

difference is that the control function depends only upon the current robot
position, and not the position at last sample time.

The event-driven control and communication law models situations in
which the agent physical and processor states need to satisfy certain con-
straints before a message should be sent. For example, in each triplet
(msg-trig[i],msg-gen[i],msg-rec[i]), the map msg-trig[i] acts as a trigger for
agent i to send a message to its neighbors, the map msg-gen[i] computes the
message to be sent, and msg-rec[i] specifies how agent i updates its proces-
sor state when receiving a message. In hybrid systems terminology (van der
Schaft and Schumacher, 2000), the map msg-trig[i] can be seen as a guard

map. Similarly, in the pair (stf-trig
[i]
k , stf

[i]
k ), the map stf-trig

[i]
k acts as a trig-

ger for agent i to update its processor state. If several stf-trig
[i]
k are satisfied

at the same time, then the agent can freely choose among the corresponding
state transition functions to update the processor state. This freedom means
that our dynamical system is described by a set-valued map and leads to
non-deterministic evolutions.

The evolution of a robotic network dictated by an event-driven control
and communication law is asynchronous: there is no common time schedule
for all robots to send messages, receive messages, and update their processor
states. Only when an event happens, an agent sends a message or updates

245

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

its state. The asynchronous event-driven evolution can be loosely described
in the following way:

(i) Starting from the initial conditions, the physical state of each agent

evolves in continuous time according to the control function ctl[i].

(ii) At every instant of time t1 ∈ R≥0 such that the message-trigger func-

tion for agent i satisfies msg-trig[i](x[i](t1), w
[i](t1)) = true, agent i

generates a non-null message according to msg-gen[i] and sends it
to all its out-neighbors. At time t1, each out-neighbor j of agent
i receives a messages and processes it according to msg-rec[j]. If
multiple messages are received at the same time, then we allow all
possible orders of execution of the message-reception function.

(iii) Additionally, at every instant of time t2 ∈ R≥0 such that one of the

state-transition triggers satisfies stf-trig
[i]
k (x[i](t2), w

[i](t2), y
[i](t2)) =

true, agent i updates its processor state w[i] according to stf
[i]
k . If

multiple state transitions are triggered at the same time, then we
allow all possible orders of execution of the state-transition func-
tions.

(iv) If one or multiple state-transition and message triggers are equal to
true at the same time, then we assume that all state transitions
take place first, and immediately after the messages are generated
and transmitted.

(v) If one or multiple state-transition triggers are equal to true at the
same time at which messages are received, then we allow all possible
orders of execution of the state-transition and message-reception
functions.

(vi) In order to avoid the possibility of an infinite number of message
transmissions or state transitions in finite time, we introduce a
“dwell logic.” Let δ > 0 be a dwell time common to all agents.
For each agent i, if a message was generated at time t1 by agent
i, then no additional message is to be generated before time t1 + ε
by agent i independently of the value of its message-trigger func-
tion. Similarly, for each agent i, if a state-transition function was
executed at time t2 by agent i, then no additional state-transition
function is to be executed before time t2+ε by agent i independently
of the value of its state-transition-trigger function.

Remark 6.2 (Dwell time prevents Zeno behavior). Note that: (1) a
dwell time is introduced only for the purpose of properly defining an exe-
cution for a general event-drive control and communication law; (2) infinite
numbers of message transmissions or state transitions in finite time will not
take place during the execution of the algorithm that we present later in the
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chapter; and (3) we refer the reader interested in comprehensive treatments
of the so-called Zeno behavior to van der Schaft and Schumacher (2000);
Johansson et al. (1999). •

Finally, as we did in Chapter 3, we now give a formal definition of the
asynchronous evolution of an event-driven control and communication law
on a robotic network.

Definition 6.3 (Asynchronous event-driven evolution with dwell
time). Let ECC be an event-driven control and communication law for the
robotic network S. For δ ∈ R>0, the evolution of (S, ECC) with dwell time

δ from initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈W

[i]
0 , i ∈ I, is the collection of

absolutely continuous curves x[i] : R≥0 → X [i], i ∈ I, and piecewise-constant
curves w[i] : R≥0 →W [i], i ∈ I, such that at almost all times,

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

x[i](t), w[i](t)
))

, (6.1.1)

ẇ[i](t) = 0, (6.1.2)

with x[i](0) = x
[i]
0 and w[i](0) = w

[i]
0 , i ∈ I, and such that:

(i) For every i ∈ I and t1 ∈ R>0, a message is generated by agent i and
received by all its out-neighbors j, that is,

y
[j]
i (t1) = msg-gen[i]

(

x[i](t1), w
[i](t1), j

)

,

w[j](t1) = msg-rec[j]
(

x[j](t1), lim
t→t−1

w[j](t), y
[j]
i (t1), i

)

,

if msg-trig[i](x[i](t1), w
[i](t1)) = true and agent i has not trans-

mitted any message to its out-neighbors during the time interval
]t1 − δ, t1[∩R>0. Here, agent j is an out-neighbor of agent i at time
t1 if (i, j) ∈ Ecmm

(

x[1](t1), . . . , x
[n](t1)

)

.

(ii) For every i ∈ I, k ∈ {1, . . . ,K [i]
stf}, and t2 ∈ R>0, the state-transition

function stf
[i]
k is executed, that is,

w[i](t2) = stf
[i]
k

(

x[i](t2), lim
t→t−2

w[i](t)
)

,

if stf-trig
[i]
k (x[i](t2), w

[i](t2)) = true and there has been no execution

of stf
[i]
k during the time interval ]t2 − δ, t2[∩R>0. •

This model of event-driven control and communication law and of asyn-
chronous evolution is adopted in the rest of this chapter.
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6.2 PROBLEM STATEMENT

In this section, we formalize the network objective. We begin by reviewing
some important facts on interpolations of planar boundaries by means of in-
scribed polygons. After introducing the robotic network model, we make use
of notions from the theory of linear interpolations to formalize the boundary
estimation task.

6.2.1 Linear interpolations for boundary estimation

Consider a simply connected set Q in R2, that we term the body. We are
interested in obtaining a description of the boundary ∂Q of a convex body.
In particular, we will consider the symmetric difference error metric (Gruber,
1983) to measure the goodness of an approximation to ∂Q. The symmetric
difference δS between two compact bodies C, B ⊆ R2 is defined by

δS(C,B) = A(C ∪B) − A(C ∩B),

where, given a set S ⊂ R2, A(S) is its Lebesgue measure. This definition
is illustrated in Figure 6.1. We note that the symmetric difference admits
alternative definitions (see Exercise E6.1). In what follows, we search for

Figure 6.1 The symmetric difference between the two quadrilaterals is the area corre-
sponding to the region colored in light gray.

approximations to a convex body Q by means of inscribed polygons. A
convex polygon is inscribed in Q if all its vertices belong to the boundary of
Q. We denote an inscribed polygon with m vertices by Qm. The symmetric
difference between the body Q and the polygon Qm takes the simpler form

δS(Q,Qm) = A(Q) − A(Qm).

The inscribed polygons that are critical points of δS can be characterized as
follows.
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Lemma 6.4 (Characterization of critical inscribed polygons for the
symmetric difference). Let Q be a convex planar body with a continu-
ously differentiable boundary. Let Qm be an inscribed polygon with vertices
{q1, . . . , qm} in counterclockwise order. For i ∈ {1, . . . ,m}, let t(qi) be the
tangent vector to ∂Q at qi. Then, Qm is a critical point of δS if and only if

t(qi) is parallel to (qi+1 − qi−1), (6.2.1)

for all i ∈ {1, . . . ,m}, where q0 = qm and qm+1 = q1.

Note that the characterization of critical inscribed polygons in Lemma 6.4
can be satisfied not only by polygons that are maximizers, but also by saddle
points (see Exercise E6.2). On the other hand, we would like to make use of
a characterization that can be extended to nonconvex bodies and that relies
as much as possible on local information that agents can collect.

In what follows, we describe the method of empirical distributions, based
on the asymptotic formula provided in the following lemma. We start with
some useful notation. As in Section 1.1, let ∂Q be twice continuously
differentiable and let γarc : [0, L] → ∂Q be a counterclockwise arc-length
parametrization of ∂Q. Additionally, let κsigned : [0, L] → R, κabs : [0, L] →
R≥0, and ρ : [0, L] → R≥0 be, respectively, the signed curvature, the absolute
curvature, and radius of curvature of the boundary. For convex bodies, the
following result is proved in McLure and Vitale (1975), and Gruber (1983).

Lemma 6.5 (Optimal polygonal approximation of a convex body).
Let Q be a convex planar body whose boundary is twice continuously differen-
tiable and has strictly positive signed curvature κsigned. If Q∗

m is an optimal
approximating polygon of Q, then

lim
m→+∞

m2δS(Q,Q∗
m) =

1

12

∫ L

0
ρ(s)2/3ds.

To compute an optimal approximating polygon for a strictly convex body,
McLure and Vitale (1975) suggest the following method of empirical distri-
butions. Let q1, . . . , qm be consecutive points on ∂Q ordered counterclock-
wise and, for i ∈ {1, . . . ,m}, define si ∈ [0, L] by requiring qi = γarc(si).
The positions qi, i ∈ {1, . . . ,m}, along ∂Q are said to obey the method of
empirical distributions if

∫ si

si−1

ρ(s)2/3ds =

∫ si+1

si

ρ(s)2/3ds (6.2.2)

for all i ∈ {1, . . . ,m}, where we set s0 = sm and sm+1 = s1. Interpolating
polygons computed according to the method of empirical distributions con-
verge to an optimal polygon approximation Q∗

m as m→ ∞. Roughly speak-
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ing, this property translates into the placement of more interpolation points
on those parts of the boundary that have higher curvature. Figure 6.2.1
illustrates an approximating polygon with empirically distributed vertices.
As final comment about convex bodies, it is useful to know from Gruber

Figure 6.2 Equidistant interpolation points according to the integral in equation (6.2.2).
The solid green line represents the boundary and the dashed red line represents
the optimal approximating polygon.

(1983) that, for α > 0,
∫ L

0
ρ(s)αds =

∫ L

0
κabs(s)

1−αds. (6.2.3)

Next, we discuss the case of nonconvex bodies whose boundary can be
parameterized by a twice continuously differentiable curve. We begin with
a definition: given a twice continuously differentiable curve γ : [0, L] → R2,
an inflection point of γ is a point q ∈ γ([0, L]) with the property that, for
q = γ(sq), sign(κsigned(sq − ε)) 6= sign(κsigned(sq + ε)) for every ε ∈ R>0

sufficiently small. Nonconvex bodies have an arbitrary number of inflection
points; we restrict our attention to nonconvex bodies with a finite number
of them. Because the radius of curvature of a nonconvex body is unbounded
at inflection points, equality (6.2.2) is ill posed in general. Therefore, in
order to extend the method of empirical distributions to nonconvex bodies,
we introduce the following notions of distance along a boundary. Given two
points qi = γarc(si) and qj = γarc(sj), with si < sj , we define

Dcurvature(qi, qj) =

∫ sj

si

κabs(s)
1/3ds,

Darc(qi, qj) = sj − si.

Note that the quantity Darc(qi, qj) is always strictly positive for qi 6= qj ,
whereas the quantity Dcurvature(qi, qj) vanishes if the points qi and qj are
connected by a straight line. Additionally, for λ ∈ [0, 1], we define the
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pseudo-distance Dλ between the vertices qi and qj as

Dλ(qi, qi+1) = λDcurvature(qi, qj) + (1 − λ)Darc(qi, qi+1).

The empirical distribution criterion (6.2.2) is substituted by the following
one when the boundary is nonconvex. We look for approximations of ∂Q,
{q1, . . . , qm}, such that Dλ(qi−1, qi) = Dλ(qi, qi+1) for all i ∈ {1, . . . ,m}.
This choice has the following interpretation. Taking λ ≈ 1 leads to an
interpolation that satisfies a modified method of empirical distributions.
The method is modified in the sense that we adopt the distance Dcurvature

instead of the integral of the curvature radius; our informal justification for
this step is equality (6.2.3). Instead, taking λ ≈ 0 leads to an interpolation
that divides the boundary into segments of equal arc-length. A choice of
λ ∈ (0, 1) leads to a polygon approximation that is midway between these
two options. For sufficiently large λ < 1, the resulting polygon has a higher
number of vertices in the portions of the boundary with higher curvature and
the distance between any two consecutive interpolation points is guaranteed
to be positive.

6.2.2 Network model and boundary estimation task

Next, we formulate a robotic network model and the boundary estimation
objective. Assume that Q is a simply connected subset of R2 with differ-
entiable boundary ∂Q. Consider the network Sbndry = (I,R, Ecmm), with
I = {1, . . . , n}. In this network, each robot is described by a tuple

(∂Q, [−vmin, vmax], ∂Q, (0, e)), (6.2.4)

where e is the vector field tangent to ∂Q describing counterclockwise motion
at unit speed; we assume that unit speed is an admissible speed, that is, we
assume that 1 ∈ [−vmin, vmax]. We assume that each robot can sense its
own location p[i] ∈ ∂Q, i ∈ I, and can communicate with its clockwise and
counterclockwise neighbors along ∂Q. In other words, the communication
graph Ecmm is the ring graph or the Delaunay graph on ∂Q. Later, we shall
assume that Q varies in a continuously differentiable way with time, and
that, therefore, agents move along its time-varying boundary.

Next, assume that the processor state of each agent contains a set of nip

interpolation points used to approximate ∂Q, that is, the processor state is
given by q[i] ∈ (R2)nip , for i ∈ I. We illustrate the combination of agents
and interpolation points along the boundary in Figure 6.3.

For ε ∈ R>0 and λ ∈ [0, 1], the boundary estimation task Tε-bndry : (∂Q)n×
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Figure 6.3 Agents and interpolation points on the boundary ∂Q.

((R2)nip)n → {true, false} for Sbndry is the coordination task

Tε-bndry(p
[1], . . . , p[n], q[1], . . . , q[n]) = true if and only if

∣

∣

∣Dλ(q
[i]
α−1, q

[i]
α ) −Dλ(q[i]α , q

[i]
α+1))

∣

∣

∣ < ε, α ∈ {1, . . . , nip} and i ∈ I.

Roughly speaking, this task is achieved when the nip interpolation points
are approximately uniformly placed along the boundary according to the
counterclockwise pseudo-distance Dλ.

A second objective is our desire to space the agents equally far apart
along the boundary. As in Example 3.22, for ε > 0, we define the agent
equidistance task Tε-eqdstnc : (∂Q)n → {true, false} to be true if and only
if

∣

∣Darc(p
[i−1], p[i]) −Darc(p

[i], p[i+1])
∣

∣ < ε, for all i ∈ I,

where Darc is the counterclockwise arc-length distance along ∂Q. In other
words, Tε-eqdstnc is true when, for every agent, the (unsigned) distances to
the closest clockwise neighbor and to the closest counterclockwise neighbor
are approximately equal.

6.3 ESTIMATE UPDATE AND CYCLIC BALANCING LAW

Here, we propose a coordination algorithm for a robotic network to achieve
the boundary estimation task. The algorithm requires individual agents to
maintain and continuously update an approximation of the boundary that
asymptotically meets the criterion of the method of empirical distributions.
The algorithm is an event-driven control and communication law, as defined
in Section 6.1. To facilitate the understanding, the algorithm is presented
in an incremental way. First, we specify an estimate update law for a sin-
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gle robot. Second, we consider multiple robots cooperatively performing
the estimate update law to achieve the boundary estimation task. Third
and finally, we introduce a cyclic balancing algorithm to achieve a robot
equidistance task.

6.3.1 Single-robot estimate update law

Let Q be a simply connected subset of R2 with a differentiable moving
boundary ∂Q. Consider a single robot described by (6.2.4) that moves
along ∂Q. Assume that the processor state contains a set of interpolation
points {q1, . . . , qnip

} used to approximate ∂Q. We begin with an informal
description of the Single-Robot Estimate Update Law and we illustrate
in Figure 6.4 the two actions characterizing this law:

[Informal description] The agent moves counterclockwise along
the moving boundary ∂Q, collecting estimates of its tangent and
curvature. Using these estimates, the agent executes the fol-
lowing two actions. First, it updates the positions of the in-
terpolation points so that they take value on the estimate of
∂Q. In other words, as sufficient information is available, each
interpolation point qα, α ∈ {1, . . . , nip}, is projected onto the
estimated boundary. Second, after an interpolation point qα has
been projected, the agent collects sufficient information so that
it can locally optimize the location of qα along the estimate of
∂Q. Here, by an estimate of the time-varying ∂Q, we mean the
trajectory of the agent along the moving boundary.

project

optimize

Figure 6.4 The two actions characterizing the Single-Robot Estimate Update Law.

Next, we begin our detailed description of the algorithm by specifying
what variables the agent maintains in its memory. The processor state of
the agent consists of the following variables:

(i) A counter nxt taking values in {1, . . . , nip} that specifies which in-
terpolation point the agent is going to project next.
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(ii) A boundary representation comprised of the pairs

{(qα, vα) ∈ (R2)2 | α ∈ {1, . . . , nip}},
where qα is the position of the interpolation point α and vα repre-
sents the tangent vector of ∂Q at qα.

(iii) A curve of the form path : [0, t] → R2. This curve is the trajectory
followed by the agent from initial time until present time t. We
assume that the agent updates the variable path continuously. We
let C(R2) be the set of planar curves, that is, twice differentiable
functions from an interval to R2. With this notation, we may write
path ∈ C(R2).

Figure 6.5 The agent moves along the time-varying boundary ∂Q, here depicted as a
sequence of growing ellipses, and its trajectory is an approximation to ∂Q.

Remark 6.6 (Boundary approximation). For simplicity, we assume
that, at every instant of time, the agent is located exactly on top of the
boundary. This assumption implies that if the boundary is time-invariant,
then the agent trajectory path is locally equal to ∂Q. Furthermore, if the
boundary is slowly time-varying, then the agent’s trajectory path is an es-
timate of the moving boundary ∂Q, as illustrated in Figure 6.5. •

The agent updates its processor state according to the following two rules:

Rule #1: When and how to project onto ∂Q the interpolation point qnxt.
Let qnxt denote the interpolation point about to be projected and let vnxt
denote the corresponding tangent vector. The projection takes place when
the agent crosses the line, denoted by linenxt, that passes through qnxt
and is perpendicular to vnxt. At this crossing time, we define the updated
values for the interpolation point nxt, denoted by q+nxt, to be the point on
path where the agent’s trajectory crosses the line linenxt. This projection
operation is illustrated in Figure 6.6. We refer to this operation by the map
perp-proj : (R2)2 × C(R2) → R2; in other words, we write

q+nxt := perp-proj(qnxt, vnxt, path).
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qnxt

q+
nxt

qnxt−1

q+
nxt−1

qnxt−2

q+
nxt−2

Figure 6.6 The projection of interpolation point qnxt onto the curve path.

Rule #2: When and how to optimize the interpolation point qnxt−1. The
local optimization of the interpolation point (nxt − 1) takes place immedi-
ately after the projection of the interpolation point nxt onto the estimated
boundary. The interpolation point (nxt− 1) is moved along the curve path

in order to balance its two pseudodistances to its clockwise and counter-
clockwise neighboring interpolation points (recall that path is an estimate
of the boundary ∂Q as discussed in Remark 6.6). Specifically, we define the
map cyclic-balance : (R2)3 × C(R2) → R2 by

cyclic-balance(qnxt−2, qnxt−1, qnxt, path) is point q∗ in the curve path

such that Dλ(qnxt−2, q
∗) =

3

4
Dλ(qnxt−2, qnxt−1) +

1

4
Dλ(qnxt−1, qnxt) .

This map is illustrated in Figure 6.7. With this definition, we update the
interpolation (nxt− 1) to be

q+nxt−1 := cyclic-balance(qnxt−2, qnxt−1, qnxt, path).

qnxt−1

qnxtq+
nxt−1

qnxt−2

Figure 6.7 Optimal placement of the interpolation point qnxt−1 along the curve path.

Remark 6.7 (Balancing property of the optimal placement). The
optimal placement q+nxt−1 can be equivalently defined by

Dλ(q+nxt−1, qnxt) =
1

4
Dλ(qnxt−2, qnxt−1) +

3

4
Dλ(qnxt−1, qnxt),
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so that it achieves the balancing property that
[

Dλ(qnxt−2, q
+
nxt−1)

Dλ(q+nxt−1, qnxt)

]

=
1

4

[

3 1
1 3

] [

Dλ(qnxt−2, qnxt−1)
Dλ(qnxt−1, qnxt).

]

This iteration is the same as the cyclic balancing system with parameter
k = 1/4 studied in Exercises E1.30, E5.5, and E6.3. •

Finally, we define one last useful operation. Given a point on the curve
path, it is useful to be able to compute the tangent of the curve path at the
point q. Specifically, given a point q on the curve path, we shall write

v := tangentat(path, q).

In summary, the Single-Robot Estimate Update Law is formally de-
scribed as follows:

Robot: single robot moving at constant speed along ∂Q,
continuously recording its trajectory

Event-driven Algorithm: Single-Robot Estimate Update Law

Processor State: w = (nxt, {(qα, vα)}nip

α=1, path), where

nxt ∈ {1, . . . , nip},initially equal to index of interpola-
tion point closest to robot moving
counterclockwise

{(qα, vα)}nip

α=1⊂ R2 × R2, initially counterclockwise along boundary
path ∈ C(R2), continuously recording agent’s trajectory

% A state transition is triggered when the agent crosses a certain line
function stf-trig(p, w)

1: linenxt := line through point qnxt perpendicular to direction vnxt
2: if p ∈ linenxt then
3: return true

4: else
5: return false

% The current interpolation point and tangent vector are projected and the
previous interpolation point is optimized along the new boundary

function stf(p, w)

1: {(q+α , v+
α )}nip

α=1 := {(qα, vα)}nip

α=1
2: q+nxt := perp-proj(qnxt, vnxt, path)

3: q+nxt−1 := cyclic-balance(qnxt−2, qnxt−1, q
+
nxt, path)

4: v+
nxt := tangentat(path, q+nxt)

5: v+
nxt−1 := tangentat(path, q+nxt−1)

6: return (nxt + 1, {(q+α , v+
α )}nip

α=1, path)
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The Single-Robot Estimate Update Law may be improved in a num-
ber of ways; here, we present some important algorithmic clarifications.

Remarks 6.8 (Content and representation of the variable path).

(i) The above discussion assumes that, with the information provided
by the variable path, the agent can compute the tangent vector and
the curvature along its trajectory in order to perform the calculation
of the pseudodistance Dλ.

(ii) It is not necessary for the agent to keep in the variable path its
entire trajectory since initial time. In fact, when the agent updates
the location of the interpolation point (nxt− 1) in instruction 4: of
the state-transition function, it is sufficient that path contains the
trajectory of the agent starting from interpolation point (nxt − 2)
until the current agent position. This “limited-length” requirement
may be implemented as follows: the variable path is a curve of the
form path : [tpath, t] → R2, the variable t denotes the present time,
the variable tpath is initially set equal to 0, and the instruction

tpath := t∗ such that qnxt−1 = path(t∗),

is executed before instruction 6: in the state-transition function.

(iii) In a realistic implementation, the path variable and its first two
derivatives are to be represented with finite resolution over a discrete
time domain. The interested reader is referred to Susca et al. (2008)
for a discussion of the Single-Robot Estimate Update Law
algorithm with a realistic implementation of the path variable in a
finite-length finite-resolution manner. •

Remark 6.9 (Timeout for the projection of interpolation points).
In the definition of the Single-Robot Estimate Update Law, we have
implicitly assumed that the agent crosses the line through qnxt perpendicu-
lar to vnxt. This is certainly the case if ∂Q is static or slowly time-varying.
However, if ∂Q changes drastically, it is conceivable that the agent never
crosses the line through qnxt perpendicular to vnxt. In other words, it can
happen that the state-transition trigger function is always false. This sit-
uation can be prevented by prescribing a timeout such that, if the agent
has not crossed the line after a certain time has elapsed, then the interpo-
lation point nxt is projected onto its trajectory anyway. Formally, let t∗ be
implicitly defined by

Dλ(q+nxt−1, p(t)) = 2Dλ(qnxt−1, qnxt).

If no crossing has happened at time t, then q+nxt is set equal to the point
on path that is closest to qnxt. The tangent vector v+

nxt is set equal to
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tangentat(path, q+nxt). This projection is well-defined and has the property
that if ∂Q is time-invariant, then q+nxt = qnxt. The algorithm described
by Susca et al. (2008) explicitly incorporates this timeout. •

6.3.2 Cooperative estimate update law

In the previous section, we presented an event-driven algorithm for a single
robot to monitor a boundary. We consider the robotic network Sbndry with
ring communication topology, described in Section 6.2.2, and we develop a
parallel version of the Single-Robot Estimate Update Law that allows
the network to monitor the boundary efficiently (i.e., with more accuracy
than a single robot could). We begin with an informal description of the
Cooperative Estimate Update Law:

[Informal description] Each agent moves counterclockwise along
the moving boundary ∂Q, has its individual copy of the bound-
ary representation, including the interpolation points, and exe-
cutes the Single-Robot Estimate Update Law. Because the
agents are spatially distributed, each agent updates its individ-
ual boundary representation separately. On top of the Single-
Robot Estimate Update Law, the agents run a communi-
cation protocol that transmits the updated interpolation points
along the ring topology. Specifically, every time an agent updates
two interpolation points (using the state-transition function of
the Single-Robot Estimate Update Law and, thus, the
functions perp-proj and cyclic-balance), this agent transmits
these updated interpolation points to its clockwise and counter-
clockwise neighbors. In turn, the neighbors record the updates
in their individual boundary representation.

Next, we give a more detailed description of the algorithm. We assume
that each robot i has a processor state with its local copy of w[i] containing a

counter nxt[i], a boundary representation {(q[i]α , v
[i]
α )}nip

α=1, where nip is equal

for all robots, and its path[i]. The Cooperative Estimate Update Law
is formally described as follows:

Robotic Network: Sbndry, first-order agents moving at unit speed along ∂Q
with absolute sensing of own position, communicating
with clockwise and counterclockwise neighbors

Event-driven Algorithm: Cooperative Estimate Update Law

Alphabet: A = {1, . . . , nip} × (R2)2 × (R2)2 ∪{null}
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Processor State, function stf-trig, and function stf
same as in Single-Robot Estimate Update Law

% A transmission is triggered right after the interpolation points are updated
function msg-trig(p, w)

1: return stf-trig(p, w)

% The updated interpolation points (and reference label) are transmitted
function msg-gen(p, w, i)

1: return
(

nxt, (qnxt−1, vnxt−1), (qnxt−2, vnxt−2)
)

% The received updated interpolation points are stored
function msg-rec(p, w, y, i)

1: {(q+α , v+
α )}nip

α=1 := {(qα, vα)}nip

α=1
2: (nxtrec, y1, y2) := y
3: (q+nxtrec−1, v

+
nxtrec−1) := y1

4: (q+nxtrec−2, v
+
nxtrec−2) := y2

5: return (nxt, {(q+α , v+
α )}nip

α=1, path)

We conclude this section with an important clarification. We begin with
a useful definition and then give two related remarks.

Definition 6.10 (Two-hop separation). A group of n ≥ 2 agents imple-
menting the Cooperative Estimate Update Law is two-hop separated
along the interpolation points if nxt[i−1] ≤ nxt[i] −2 for all i ∈ I at all times
during the execution of the algorithm. •

Remarks 6.11 (Well-posedness of the Cooperative Estimate Up-
date Law).

(i) The inequality nxt[i−1] ≤ nxt[i] − 2 guarantees that each robot can
correctly implement the algorithm. Indeed, if this inequality is vi-
olated, then the cyclic-balance function performed by robot i
during the state-transition function is invoked with an interpola-

tion point q
[i]
nxt−2 which does not take value in the curve path[i]

(because the boundary might be time-varying). This inequality
therefore guarantees that the algorithm is well-posed. Assuming
two-hop separation guarantees that the projection and optimiza-
tion events happen in the following order: each interpolation point
nxt[i] is projected and later optimized by robot i, strictly before it
is projected by robot (i− 1).

(ii) The two-hop separation property is easily seen to hold when (1) the
number of interpolation points nip is much larger than the num-
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ber of robots n, (2) the robots are approximately equidistant along
∂Q, and (3) the distances between pairs of consecutive interpolation
points are much less than the length of ∂Q divided by n. •

6.3.3 Cyclic balancing algorithm for agent equidistance task

Here, we propose a motion coordination controller to achieve the agent
equidistance task Tε-eqdstnc among the agents moving along the boundary.
This task also leads to the orderly interactions mentioned in the last remark.
Specifically, we extend the Cooperative Estimate Update Law to in-
clude a motion coordination component that makes the agents achieve the
agent equidistance task while moving at approximately unit speed along the
boundary. The control design is straightforward: for robot i at position p[i]

moving in continuous time with speed v[i] along ∂Q, we define

v[i] = 1 + kprop

(

Darc(p
[i], p[i+1]) −Darc(p

[i−1], p[i])
)

, (6.3.1)

where kprop ∈ R>0 is a fixed control gain. In other words, the agent speeds
up or slows down depending upon whether it is closer to the following
or to the preceding agent, respectively. This simple motion control law
is the continuous-time analog of the cyclic balancing system described in
Exercise E1.30; recall that this system was adopted also in the Single-
Robot Estimate Update Law for the purpose of balancing pseudodis-
tances among interpolation points.

To handle the lower and upper bounds constraints on the velocity, that
is, the constraint v ∈ [−vmin, vmax], we introduce a saturation function in
the design (6.3.1). Specifically, we implement

v[i] = sat[vmin,vmax]

(

1 + kprop

(

Darc(p
[i], p[i+1]) −Darc(p

[i−1], p[i])
)

)

, (6.3.2)

where the saturation function sat[a,b] : R → [a, b], for a < b, is defined by

sat[a,b](x) =











a, if x < a,

x, if x ∈ [a, b],

b, if x > b.

The difficulty in implementing controller (6.3.2) in the Cooperative
Estimate Update Law is how to measure the counterclockwise arc-length
distance between robots. To tackle this difficulty, let us begin with a useful
observation. Given the interpolation points {q1, . . . , qnip

} and two points
on the boundary r1, r2, assume that sufficient information is available to
compute the indices [r1] and [r2] of the counterclockwise-closest interpolation
points from r1, r2, respectively. With this notation and the assumption,
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the counterclockwise pseudodistance from r1 to r2 and one of its possible
approximations are as follows:

Darc(r1, r2) = Darc(r1, q[r1]) +

[r2]−2
∑

α=[r1]

Darc(qα, qα+1) + Darc(q[r2]−1, r2)

(6.3.3)

≈ dist2(r1, q[r1]) +

[r2]−2
∑

α=[r1]

dist2(qα, qα+1) + dist2(q[r2]−1, r2).

(6.3.4)

Based on this equality and on this approximation, we propose two meth-
ods to implement the controller (6.3.2). One may implement either of the
following:

(i) The approximation proposed in (6.3.4); this approximated pairwise
counterclockwise arc-length distance may be computed with the in-
formation available to the agents in the Cooperative Estimate
Update Law.

(ii) The exact computation proposed in (6.3.3); in order to perform this
computation, however, the robots require more information. The
processor state is required to store a collection of arc-length dis-
tances Darc(qα, qα+1), α ∈ {1, . . . , nip} that are measured by the
agents as they move, and that are maintained accurate via commu-
nication. In the interest of brevity, we omit a detailed discussion of
this point here.

Finally, independently of the computation or approximation of the arc-
length distances, the implementation of controller (6.3.2) requires each agent
to have a continuous-time estimate of the location of its clockwise and
counterclockwise neighbors: this information may be acquired by either a
dedicated message-exchanging protocol or, possibly, by proximity sensors
mounted on the robots. In the interest of brevity, we omit a detailed dis-
cussion of this point here.

6.3.4 Correctness of the estimate update and cyclic balancing law

We call the Estimate Update and Balancing Law the combination
of the Cooperative Estimate Update Law with the cyclic balancing
control law (6.3.2), with exact arc-length distance computation between
robots.
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We call the Approximate Estimate and Balancing Law the combi-
nation of the Cooperative Estimate Update Law with the cyclic balanc-
ing control law (6.3.2), with (1) finite-resolution finite-length representation
of the path variable in the robots, and (2) approximate arc-length distance
computation between robots.

We state the properties of these laws in the following theorem, whose
proof is postponed to Section 6.6.

Theorem 6.12 (Correctness of the exact and approximate laws).
On the network Sbndry, along evolutions with the two-hop separation prop-
erty:

(i) the Estimate Update and Balancing Law achieves the bound-
ary estimation task Tε-bndry and the agent equidistance task Tε-eqdstnc

for any ε ∈ R>0 if the boundary is time-independent; and

(ii) the Approximate Estimate and Balancing Law achieves the
boundary estimation task Tε-bndry and the agent equidistance task
Tε-eqdstnc for some ε ∈ R>0 if the boundary varies in a continuously
differentiable way and sufficiently slowly with time, and its length is
upper bounded.

Remark 6.13 (Error induced by the evolution of the boundary and
its discretization). In the second statement in the theorem, the constant
ε depends upon the rate of change of the boundary and upon the accuracy
of the various approximations made in the algorithm. •

6.4 SIMULATION RESULTS

In order to illustrate the performance of the algorithms, we include here dif-
ferent simulation results of the Approximate Estimate and Balancing
Law. In the first simulation, the boundary to be estimated is time invariant,
while in the second it is time-varying.

Time-invariant boundary

As a first simulation, we assume that n = 3 agents aim to approximate the
time-invariant boundary ∂Q described by the closed curve

γ(θ) =
(

2 + cos(5θ) + 0.5 sin(2θ)
)

[

cos(θ)
sin(θ)

]

, θ ∈ [0, 2π].

The control gain is kprop = 0.05. The minimum and maximum velocities are
vmin = 0.5 and vmax = 2. The number of interpolation points is nip = 30.
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Pseudodistances are computed with λ = 10
11 . The simulation time is 50

seconds. At initial time, the interpolation points are selected to be the posi-
tions of the agents and other randomly distributed points on the boundary.
Finally, each robot maintains a discretized representation of its trajectory
path with a resolution of 0.01 seconds.

The behavior of the Approximate Estimate and Balancing Law is
illustrated in Figure 6.8. The left- and right-hand figures correspond to
the positions of the interpolation points and the agents at the initial and
final configurations, respectively. In the right-hand figure one can see the
approximating polygon and how close it is to the actual boundary.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Initial Configuration

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Configuration

Figure 6.8 The Approximate Estimate and Balancing Law for a time-invariant
boundary: initial and final configuration of agents (drawn as triangles) and
interpolation points. The right-hand figure shows also the approximating poly-
gon.

Figure 6.9 illustrates the convergence of the algorithm. Although the Ap-
proximate Estimate and Balancing Law uses an approximated version
of the pseudodistances between interpolation points and of the arc-length
distance between agents, we illustrate the performance of the algorithm by
plotting the exact versions of the pseudodistances and arc-length distances.
Regarding the boundary estimation task, the left-hand figure illustrates how
the quantity maxα∈{1,...,nip}Dλ(qα, qα+1) − minα∈{1,...,nip}Dλ(qα, qα+1) does
indeed decrease towards zero, even though it does not vanish because of
the adopted approximations. Regarding the equidistance task, the right
figure illustrates how the agents become uniformly spaced along the bound-
ary. Again, the arc-length distances converge toward a common steady-state
value, even though the convergence is not exact because of the adopted ap-
proximations.
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Figure 6.9 The Approximate Estimate and Balancing Law for a time-invariant
boundary: the left-hand figure shows the largest minus the smallest pseu-
dodistance between neighboring interpolation points. The right-hand figure
shows the three arc-length distances between the three agents.

Slowly time-varying boundary

As a second simulation, we assume that n = 4 agents aim to approximate
the time-varying boundary ∂Q described by the time-varying closed curve

γ(θ, t) =

(

2
tfinal − t

tfinal
+

(

2 + cos(5θ) + 0.5 sin(2θ)
) t

tfinal

)[

cos(θ)
sin(θ)

]

,

with θ ∈ [0, 1], t ∈ [0, tfinal], and tfinal = 200 seconds, as shown in Figure 6.10.
The parameters and initial conditions of the Approximate Estimate and
Balancing Law are the same as in the time-invariant case. The four plots
in Figure 6.10 show the positions of the interpolation points and of the
agents at the four time instants 0, 50, 100, and 200 seconds, respectively.
The last plot also illustrates how close the approximating polygon is to the
actual boundary. From the frames in Figure 6.10, it is clear that the agents
can adapt as ∂Q changes.

6.5 NOTES

For a discussion of hybrid systems we refer to van der Schaft and Schumacher
(2000). Other relevant references include Lygeros et al. (2003), Goebel et al.
(2004), and Sanfelice et al. (2007).

Many methods are currently available (Mehaute et al., 1993) for the ap-
proximation of planar curves; this fact is largely motivated by computational
and signal-processing applications. Among them, the use of interpolated
curves is a standard and important approach. In their most simple version,
interpolations provide polygonal approximations of curves, with generaliza-
tions that make use of splines, or combinations of functions in a certain basis.
In particular, the problem of characterizing the polygons that optimally ap-
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Figure 6.10 The Approximate Estimate and Balancing Law for a time-varying
boundary: the configuration of the agents (drawn as triangles) and inter-
polation points at time instants 0, 50, 100, and 200 seconds. The last figure
also shows the approximating polygon.

proximate a closed, convex body is a classical one; see the survey by Gruber
(1983). In particular, the asymptotic formula in Lemma 6.5 was extended
in (Gruber, 1983) to higher dimensions in terms of the Gauss curvature.

Boundary estimation and tracking is useful is numerous applications such
as the detection of harmful algal blooms (Marthaler and Bertozzi, 2003;
Bertozzi et al., 2004), oil spills (Clark and Fierro, 2007), and fire contain-
ment (Casbeer et al., 2005, 2006). Marthaler and Bertozzi (2003) adopt the
so-called “snake algorithm” (from the computer vision literature) to detect
and track the boundary of harmful algal bloom. Each agent is equipped with
a chemical sensor that is able to measure the concentration gradient and with
a communication system that is able to exchange information with a data fu-
sion center. Bertozzi et al. (2004) suggest an algorithm that requires only a
concentration sensor: the agents repeatedly cross the region boundary using
a bang–bang angular velocity controller. Clark and Fierro (2007) use a ran-
dom coverage controller, a collision avoidance controller, and a bang–bang
angular velocity controller to detect and surround an oil spill. Casbeer et al.
(2006) describe an algorithm that allows Low Altitude Short Endurance
Unmanned Vehicles (LASEUVs) to closely monitor the boundary of a fire.
Each of the LASEUVs has an infrared camera and a short-range communi-
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cation device to exchange information with other agents, and to download
the information collected to the base station. In Zhang and Leonard (2005),
a formation of four robots tracks at unitary speed, the level sets of a field.
Their relative positions change, so that they can optimally measure the gra-
dient and estimate the curvature of the field in the center of the formation.
In Zhang and Leonard (2007), a controller is proposed to steer a group of
constant-speed robots onto an equally spaced configuration along a close
curve.

6.6 PROOFS

This section presents the main result of the chapter on the correctness of
Theorem 6.12. For the sake of completeness, we review first some notations
and main concepts for Input-to-State-Stability (ISS) of discrete-time sys-
tems, as introduced in Angeli (1999), Jiang and Wang (2001), and Angeli
(1999); Sontag (2008). We then make use of these to prove the result of
Theorem 6.12.

6.6.1 Review of ISS concepts

A function γ : R≥0 → R≥0 is a K-function if it is continuous, strictly
increasing, and γ(0) = 0. A function β : R≥0×R≥0 → R≥0 is a KL-function
if, for each t ∈ R≥0, the function s 7→ β(s, t) is a K-function, and for each
s ∈ R≥0, t 7→ β(s, t) is decreasing and β(s, t) → 0 as t→ +∞.

Consider the discrete-time nonlinear system

x(ℓ+ 1) = f(x(ℓ), u(ℓ)), (6.6.1)

where ℓ takes values in Z≥0, x takes values in Rn, and u takes values in Rm.
We assume that f : Z≥0 × Rn × Rm → Rn is continuous. In what follows,
we let ‖u‖2,∞ = sup{‖u(ℓ)‖2 | ℓ ∈ Z≥0} ≤ +∞.

Definition 6.14 (Input-to-state stability). The system (6.6.1) is input-
to-state stable (ISS) if there exist a KL-function β and a K-function γ such
that, for each initial condition x0 ∈ Rn at time ℓ0 ∈ Z≥0 and for each
bounded input u : Z≥0 → Rm, the system evolution x satisfies, for each
ℓ ≥ ℓ0,

‖x(ℓ)‖2 ≤ β(‖x0‖2, ℓ− ℓ0) + γ(‖u‖2,∞). •

Definition 6.15 (ISS-Lyapunov function). A function V : Rn → R≥0

is an ISS-Lyapunov function for system (6.6.1) if:

(i) it is continuously differentiable;
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(ii) there exist K∞-functions, α1, α2, such that α1(‖x‖2) ≤ V (x) ≤
α2(‖x‖2); and

(iii) there exist a K∞-function α3 and a K-function σ such that

V (f(x, u)) − V (x) ≤ −α3(‖x‖2) + σ(‖u‖2). •

We refer to Jiang and Wang (2001) for a proof of the following result.

Theorem 6.16 (ISS and Lyapunov functions). System (6.6.1) is ISS
if and only if it admits an ISS-Lyapunov function.

6.6.2 Proof of Theorem 6.12

Proof. In the interest of brevity, we prove only the statements that pertain
to the boundary estimation task Tε-bndry, that is, to the task

∣

∣

∣
Dλ(q

[i]
α−1, q

[i]
α ) −Dλ(q[i]α , q

[i]
α+1))

∣

∣

∣
< ε,

for all α ∈ {1, . . . , nip} and i ∈ I. We refer to Susca et al. (2008) for the
proof of the statements regarding the agent equidistance task.

We begin our analysis with the case of a single robot, that is, we con-
sider the Estimate Update and Balancing Law algorithm, and we
first consider the case of a time-invariant boundary with exact path rep-
resentation and with no approximations in any computation. Define the
shorthand Dα = Dλ(qα, qα+1), for α ∈ {1, . . . , nip}, and the positive vector
D = (D1, . . . ,Dnip

) ∈ R
nip

>0 . We now characterize how the vector D changes
after one application of the state-transition function with counter nxt in
the Single-Robot Estimate Update Law. We refer to an application
of the state-transition function as a projection-and-placement event. Be-
cause the boundary is time-invariant, the projection operation (performed
by the function perp-proj) leaves the interpolation point qnxt unchanged.
Furthermore, as discussed in Remark 6.7, the placement operation (per-
formed by the function cyclic-balance) modifies the interpolation point
qnxt−1 so that

[

Dnxt−2

Dnxt−1

]+

=
1

4

[

3 1
1 3

] [

Dnxt−2

Dnxt−1

]

,

where we adopt the shorthand D+
α = Dλ(q+α , q

+
α+1), for α ∈ {1, . . . , nip}. For
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nxt ∈ {1, . . . , nip}, define Anxt ∈ Rnip×nip by

(Anxt)jk =











3/4, if (j, k) equals (nxt− 1, nxt− 1) or (nxt− 2, nxt− 2),

1/4, if (j, k) or (j, k) equals (nxt− 1, nxt− 2),

δjk, otherwise

and define the undirected graph Gnxt with vertices {1, . . . , nip} and with the
single edge (nxt− 1, nxt− 2). In summary, the matrix Anxt determines the
change of state D+ = AnxtD when a projection-and-placement event takes
place with counter nxt and its associated graph is Gnxt.

Because the boundary has finite length and the agent moves at lower-
bounded speed, an infinite number of projection-and-placement events take
place for each interpolation point. After a re-parametrization of time, let
ℓ ∈ N denote the times at which projection-and-placements events take place
and let nxt(ℓ) ∈ {1, . . . , nip} denote the index corresponding to the event
taking place at time ℓ. At each time ℓ ∈ N, we write

D(ℓ) = Anxt(ℓ)D(ℓ− 1). (6.6.2)

Next, note that Anxt(ℓ), for ℓ ∈ N, is a non-degenerate sequence of symmet-
ric and doubly stochastic matrices. Additionally, note that the undirected
graph ∪τ≥ℓGnxt(τ) is connected. Therefore, by Theorem 1.65 and Corol-
lary 1.70, we know that, for all α ∈ {1, . . . , nip},

lim
ℓ→+∞

Dα(ℓ) =
1

nip

nip
∑

α=1

Dα(0) =
1

nip

(

total pseudodistance length of ∂Q
)

.

This proves that the interpolation points become equally spaced along ∂Q
with respect to pseudodistance and that the boundary estimation task is
achieved in the time-invariant case. In other words, this concludes the proof
of the boundary estimation part of statement (i) for a single robot in The-
orem 6.12.

Next, we consider the Cooperative Estimate Update Law for net-
works of n ≥ 2 agents. Each agent has maintains a local copy of the
pseudodistance vector and of the interpolation points (which always take
value in ∂Q because the boundary is time-invariant). Specifically, for i ∈
{1, . . . , n}, agent i maintains vector D[i] and interpolation points q

[i]
α , for

α ∈ {1, . . . , nip}. We define the aggregate pseudodistance vector D as fol-
lows: we let Dα equal the most recently updated element of the vector

{D[1]
α , . . . ,D[n]

α }, that is, the pseudodistance between the most recently up-

dated interpolation points q
[i]
α and q

[i]
α+1, for i ∈ {1, . . . , n}. As before, after

a re-parametrization of time, let ℓ ∈ N denote the times at which projection-
and-placements events take place (independently of which agent i executes
the event) and let nxt(ℓ) ∈ {1, . . . , nip} denote the index corresponding to
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the event taking place at time ℓ (independently of which agent i executes the
event). Note that when agent i updates the interpolation points qnxt(ℓ)−1

and qnxt(ℓ)−2, agent i then transmits the updated points to its immediately
following agent i − 1, so that the processor state of agent i − 1 contains
the correct updated information. Also note that since the boundary is time-
invariant, the updated interpolation points belong to the trajectory path[i−1]

that agent i−1 maintains in its memory: this fact guarantees that agent i−i
can properly perform the cyclic-balance operation. In summary, equa-
tion (6.6.2) is the correct model not only for the Single-Robot Estimate
Update Law but also for the Cooperative Estimate Update Law.
This concludes the proof of the boundary estimation part of statement (i)
for n ≥ 2 robots in Theorem 6.12.

Let us now relax the assumption on the boundary and consider a time-
varying t 7→ ∂Q(t); as before, we first consider the case of a single robot. We
assume that pseudodistances between interpolation points along the agent
path curve are computed exactly. By assumption, the boundary ∂Q varies
in a continuously differentiable way and slowly in time and, therefore, the
projection of the interpolation points is well defined and unique. For the
case of a time-varying boundary, the state trajectory in continuous time
is a curve of the form D : R≥0 → Rnip defined as follows. Note that, in
general, the interpolation points lie outside ∂Q at almost all times, and
therefore it makes no sense to define Dα as the pseudodistance from point
qα to qα+1 along ∂Q. Rather, we give the following definition: D is the
vector of pseudodistances computed by the robot along the curve path. As
a consequence, the state trajectory D is constant for almost all times and it
changes only at projection-and-placement events. Specifically, let ℓ denote
the time at which a projection-and-placements event takes place with cor-
responding index nxt(ℓ) ∈ {1, . . . , nip}. At time ℓ, the Single-Robot Es-
timate Update Law computes new values for the pseudodistances Dnxt−2

and Dnxt−1 based on the processor state of the agent (i.e., based on the
interpolation points and the path variable); these values are the new values
of the state D. Because the boundary has upper-bounded length uniformly
in time and because the agent moves at constant speed, an infinite number
of projection-and-placement events takes place for each interpolation point
and the duration of time between two consecutive events is uniformly upper
bounded. Given this fact, we may let ℓ ∈ N serve as index for all projection-
and-placement times. Clearly, if the boundary does not vary with time, then
the transition D(ℓ) = Anxt(ℓ)D(ℓ−1) describes the projection-and-placement
event at instant ℓ. Because, instead, the boundary is time-varying, we model
the change in D due to the boundary motion by

D(ℓ) = Anxt(ℓ)

(

D(ℓ− 1) + U(ℓ)
)

, (6.6.3)

where U(ℓ) ∈ Rnip is a disturbance. By design, U(ℓ) is nonzero only on
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components (nxt(ℓ) − 1) and (nxt(ℓ) − 2) of D. By the assumptions that
the boundary varies in a continuously differentiable way and slowly with
time, and that its length is upper bounded, we know that U is vanishing in
the rate of change of the boundary. Finally, define the disagreement vector
ℓ→ d(ℓ) ∈ span{1nip

}⊥ by

d(ℓ) = D(ℓ) −
1T

nip
D(ℓ)

nip
1nip

. (6.6.4)

From equation (6.6.3) and from the fact that Anxt(ℓ) is doubly stochastic,
the update law for d is

d(ℓ) = Anxt(ℓ)d(ℓ− 1) + u(ℓ), ℓ ∈ N, (6.6.5)

where u(ℓ) = U(ℓ) − 1
nip

1T
nip

U(ℓ)1nip
.

Equation (6.6.5) is the correct update equation even in the case of n ≥ 2
robots moving along a time-varying boundary. This fact is a consequence
of the two-hop separation assumption (see Definition 6.10). Indeed, as ex-
plained in Remarks 6.11, the inequality nxt[i−1] ≤ nxt[i] − 2 guarantees
that each robot can correctly perform each projection-and-placement event.
Given the sequence ℓ ∈ N, define a new sequence ℓk ∈ N, for k ∈ N, as fol-
lows: set ℓ1 = 1, assume without loss of generality that agent 1 is the agent
executing the first projection-and-placement event with index nxt(1), and let
ℓk ≥ 2 be the k-th time when agent 1 performs the projection-and-placement
event with same index nxt(1). Reasoning about the possible positions of all
agents at time ℓk−1 and ℓk, one can see that ℓk − ℓk−1 ≤ 2n · nip. Define
sequence Aℓk

∈ Rnip×nip , for k ∈ N, by A(1) = Anxt(1) and

A(ℓk) = Anxt(ℓk) · · ·Anxt(ℓk−1+2)Anxt(ℓk−1+1), for k ≥ 2.

By Exercise E1.17, each matrix A(ℓk) is doubly stochastic and irreducible,
because it is the product of doubly stochastic matrices and because the
union of the undirected graphs associated with the matrices defining A(ℓk)
is connected. By definition, equation (6.6.5) becomes, for k ∈ N,

d(ℓk) = A(ℓk)d(ℓk−1) +

ℓk
∑

ℓ=ℓk−1+1

Anxt(ℓk) · · ·Anxt(ℓ+1)u(ℓ)

= A(ℓk)d(ℓk−1) + B(ℓk)ustacked(ℓk), (6.6.6)

where the vector ustacked(ℓk) contains all vectors u(ℓk−1 +1), . . . ,u(ℓk), and
the matrix B(ℓk) is defined in the trivial corresponding way.

Define V : Rnip → R≥0 by V (x) = xTx and adopt this function as a
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candidate ISS-Lyapunov function for system (6.6.6). We compute

V (d(ℓk+1)) − V (d(ℓk)) = −d(ℓk)
TR(ℓk)d(ℓk)

+ uT
stacked(ℓk)ustacked(ℓk) + 2uT

stacked(ℓk)A(ℓk)d(ℓk),

where R(ℓk) = Inip
−A(ℓk)

TA(ℓk). Because A(ℓk) is doubly stochastic and
irreducible, we know (from Exercise E1.5) that R(ℓk) is positive semidefinite
and that its simple eigenvalue 0 is associated with the eigenvector 1nip

.

This fact implies that the quantity −xTR(ℓk)x is strictly negative for all
x 6∈ span{1nip

}⊥. To upper bound this quantity by a negative number, we
let As be a generic element of the set of all the possible matrices A(ℓk); such
matrices are the iterated products of at most 2n · nip matrices of the form
Anxt, where each matrix Anxt, nxt ∈ {1, . . . , nip}, appears at least once.
Define the set of nonzero eigenvalues of As by

Ss = {λ ∈ R | det
(

λInip
− (AT

s As − Inip
)
)

= 0} \ {0}

and define the eigenvalue with smallest magnitude among all matrices by
r = mins min{|λ| | λ ∈ Ss}. Note that r > 0, because we are considering a
finite set of matrices. We can then write

V (d(ℓk + 1)) − V (d(ℓk)) ≤ −α3(‖d(ℓk)‖) + σ(‖ustacked(ℓk)‖),
where α3(‖d‖) = 1

2r‖d‖2 and σ(‖ustacked‖) = (2
r + 1)‖ustacked‖2. By Def-

inition 6.15, the system described by (6.6.6) is input-to-state stable. The
input-to-state stability implies the existence of a positive ε, as in the bound-
ary estimation part of statement (ii) for n ≥ 2 robots in Theorem 6.12. �

6.7 EXERCISES

E6.1 (Alternative expression of the symmetric difference). Show that the sym-
metric difference δS between two compact bodies C, B ⊆ R3 can be alternatively
expressed as

δS(C, B) = µ(C \ B) + µ(B \ C).

Hint: Use the expressions C = (C \ B) ∪ (C ∩ B) and B = (B \ C) ∪ (C ∩ B).

E6.2 (Characterization of critical inscribed polygons for the symmetric dif-
ference). Prove Lemma 6.4. Also, show that not all critical configurations are
optimal. Specifically, consider the convex body and the gray inscribed triangle
depicted in Figure E6.1(a). Show that the gray triangle is a saddle configuration
for δS by establishing that modifications of the triangle as in Figure E6.1(b) de-
crease its area (and hence increase δS), whereas modifications of the gray triangle
as in Figure E6.1(c) increase its area (and hence decrease δS).

E6.3 (The “n-bugs problem” and cyclic interactions: cont’d). Consider n
robots at counterclockwise-ordered positions θ1, . . . , θn following the cyclic bal-
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(a) (b) (c)

Figure E6.1 An illustration of the fact that polygons satisfying (6.2.1) may not be optimal
for δS .

ancing system described in Exercise E1.30, with parameter k = 1/4:

θi(ℓ + 1) =
1

4
θi+1(ℓ) +

1

2
θi(ℓ) +

1

4
θi−1(ℓ), ℓ ∈ Z≥0.

Show that

distcc
`
θi−1(ℓ), θi(ℓ + 1)

´
=

3

4
distcc

`
θi−1(ℓ), θi(ℓ)

´
+

1

4
distcc

`
θi(ℓ), θi+1(ℓ)

´
.

E6.4 (ISS properties of averaging algorithms with inputs and outputs). This
is a guided exercise to prove some of the ISS properties of averaging algorithms
with inputs and outputs. An averaging algorithm with inputs associated to a
sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} ⊆ Rn×n, a sequence of input
gains {D(ℓ) | ℓ ∈ Z≥0} ⊆ Rn×k, and a sequence of disturbances u : Z≥0 → Rk is
the discrete-time dynamical system

x(ℓ + 1) = F (ℓ)x(ℓ) + D(ℓ)u(ℓ), ℓ ∈ Z≥0. (E6.1)

A natural question to ask is how the evolution of the trajectory x is affected by
the noise u. Let us address this in the following. Define the matrix

P =

2
6664

1 −1 0 . . . 0
0 1 −1 . . . 0
...

. . .
. . .

...
0 . . . 0 1 −1

3
7775 ∈ R

(n−1)×n.

Note that, with the notation of Exercise E1.7, one can write

T =

»
P

1
n
1T

n

–
.

Define the following output for the dynamical system (E6.1):

yerr = Px =

0
B@

x1 − x2

...
xn−1 − xn

1
CA ∈ R

n−1.
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This output can be thought of as an error signal that quantifies the disagreement
among the components of the state. Now, consider the change of variables

z = Tx =

„
yerr

xave

«
,

where xave ∈ R is the average of the components of x.
Verify that system (E6.1) reads in the new variable z as

z(ℓ + 1) = TF (ℓ)T−1 z(ℓ) + TD(ℓ)u(ℓ).

The previous result is a formal statement of the following intuition. Because of
the definition of z and of the special structure of {F (ℓ) | ℓ ∈ Z≥0}, the variable
xave plays no role in the evolution of yerr. Accordingly, we define the error system
by

yerr(ℓ + 1) = Ferr(ℓ)yerr(ℓ) + Derr(ℓ)u(ℓ), (E6.2)

and the average system by

xave(ℓ + 1) = xave(ℓ) + cerr(ℓ)yerr(ℓ) + Dave(ℓ)u(ℓ), (E6.3)

for Derr(ℓ) = PD(ℓ) and Dave(ℓ) = 1
n
1T

nD(ℓ).
Assume now that:

(a) The sequence {F (ℓ) | ℓ ∈ Z≥0} is a non-degenerate sequence of stochastic
matrices.

(b) For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated with F (ℓ).
There exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0 the digraph
G(ℓ + 1)∪ . . .∪G(ℓ + δ) contains a globally reachable node.

(c) The induced norm of {D(ℓ) | ℓ ∈ Z≥0}, for ℓ ∈ Z≥0, is uniformly bounded.
Prove that, under assumptions (a), (b) and (c) on the averaging system with

inputs, the following equivalent statements hold:

(i) the system (E6.1) with output yerr is IOS; and

(ii) the error system (E6.2) is ISS.
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Castañón, D. A. and Wu, C. (2003) Distributed algorithms for dynamic
reassignment, in IEEE Conference on Decision and Control, pages 13–18,
Maui, HI.

Chatterjee, S. and Seneta, E. (1977) Towards consensus: Some convergence
theorems on repeated averaging, Journal of Applied Probability, 14(1),
89–97.

Chavel, I. (1984) Eigenvalues in Riemannian Geometry, Academic Press,
ISBN 0121706400.

Chen, C.-T. (1984) Linear System Theory and Design, Holt, Rinehart, and
Winston, ISBN 0030602890.

Chopra, N. and Spong, M. W. (2009) On exponential synchronization of
Kuramoto oscillators, IEEE Transactions on Automatic Control, 54(2),
353–357.

Chorin, A. J. and Marsden, J. E. (1994) A Mathematical Introduction to
Fluid Mechanics, volume 4 of Texts in Applied Mathematics, third edition,
Springer, ISBN 0387979182.

Choset, H. (2001) Coverage for robotics – A survey of recent results, Annals
of Mathematics and Artificial Intelligence, 31(1-4), 113–126.
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Zavlanos, M. M. and Pappas, G. J. (2005) Controlling connectivity of dy-
namic graphs, in IEEE Conference on Decision and Control and European
Control Conference, pages 6388–6393, Seville, Spain.

298

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

— (2007a) Dynamic assignment in distributed motion planning with lo-
cal information, in American Control Conference, pages 1173–1178, New
York.

— (2007b) Potential fields for maintaining connectivity of mobile networks,
IEEE Transactions on Robotics, 23(4), 812–816.

Zhang, F. and Leonard, N. E. (2005) Generating contour plots using multiple
sensor platforms, in IEEE Swarm Intelligence Symposium, pages 309–316,
Pasadena, CA.

— (2007) Coordinated patterns of unit speed particles on a closed curve,
Systems & Control Letters, 56(6), 397–407.

Zheng, Z., Spry, S. C., and Girard, A. R. (2008) Leaderless formation control
using dynamic extension and sliding control, in IFAC World Congress,
pages 16027–16032, Seoul, Korea.

Zhong, M. and Cassandras, C. G. (2008) Distributed coverage control in
sensor network environments with polygonal obstacles, in IFAC World
Congress, pages 4162–4167, Seoul, Korea.

Zhu, M. and Mart́ınez, S. (2008a) Dynamic average consensus on syn-
chronous communication networks, in American Control Conference,
pages 4382–4387, Seattle, WA.

— (2008b) On the convergence time of distributed quantized averaging al-
gorithms, in IEEE Conference on Decision and Control, pages 3971–3976,
Cancún, México.
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space, 41, 158
time, 41, 157, 193
total communication,

158
condensation digraph, see

digraph, condensation
congestion, 194

communication, 141
physical, 141

connectivity constraint
set, see set,
connectivity
constraint

consensus
average, 58
Log–Sum–Exp, 89

control and
communication law,
142

“away-from-closest-
neighbor”,
222

“move-toward-furthest-
vertex”,
222

agree and pursue, 146
averaging, 187, 199
circumcenter, 189

in nonconvex
environments, 195

compatible, 155
data-sampled, 144
equivalent, 154
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event-driven, 243
uniform, 244

invariant, 154
limited-Voronoi-

centroid,
224

Limited-Voronoi-
normal,
223

parallel circumcenter,
192

rescheduling of, 161
static, 144
uniform, 142
Voronoi-centroid, 218

on planar vehicles,
219

range-limited version
of, 225

Voronoi-circumcenter,
221

Voronoi-incenter, 222
control structures, 40, 43
control system

allowable initial states
of, 13

continuous-time
continuous-space, 13

discrete-time
continuous-space, 13

evolution map of, 13
evolution of, 13
input space of, 13
state space of, 13
vector field of, 13

convex combination, 7
coefficients, 7

convex hull, 94
relative, 96

coordination task, 155
agent equidistance,

156, 251
boundary estimation,

251
deployment
ε-r-area, 216
ε-r-distortion-area,

216

ε-disk-covering, 217
ε-distortion, 216
ε-sphere-packing, 217

direction agreement,
156

rendezvous
ε-, 177
exact, 177

static, 155
curve, 5

arc-length
parameterization of, 5

closed, 5
curvature of

absolute, 6, 248
signed, 6, 248

inflection point of, 249
length of, 5
not self-intersecting, 5
outward normal vector

of, 6
parameterization of, 5
radius of curvature of,

6, 248
tangent vector of, 6

cycle, see graph, cycle
and digraph, cycle

cyclic balancing, 91
cyclic pursuit, 91

density, 99, 215
DFS tree, see tree,

depth-first spanning
diagonal set, 2
diameter, 5
digraph, 20

acyclic, 22, 86
aperiodic, 22, 35
clique of, 21
complete, 21
condensation, 23, 86
cycle, 22
diameter, 26
directed path, 22

length, 26
shortest, 27

distance, 26
edge, 20

edge set of, 20
in-neighbor, 21, 24
intersection, 21
maximal clique of, 21
node, see digraph,

vertex
out-neighbor, 21
path

directed, see digraph,
directed path

periodic, 23
reverse, 21
ring, 23
sink of, 22
source of, 22, 43
spanning tree of, see

tree, spanning
strongly connected, 23,

34
subgraph of, 21

induced, 21
spanning, 21

topologically balanced,
21

undirected, 20
union, 21, 75
vertex, 20

globally reachable,
23, 35, 55

in-degree, 21
out-degree, 21
radius, 26, 45

vertex set of, 20
weighted, see weighted

digraph
disagreement function, 87
distance, 3
Lp, 3
between a point and a

set, 4
between a vertex and a

set, 32
between two vertices,

see digraph, distance
Cartesian product, 4
clockwise, 3
counterclockwise, 3
geodesic, 3
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dwell time, 245
dynamical system, 13

allowable initial states
of, 13

continuous-time
continuous-space, 13

discrete-time
continuous-space, 13,
52

equilibrium point of, 14
evolution of, 13

uniformly bounded,
19

input space of, 13
set-valued, 17

allowable initial
states of, 17

evolution map of, 17
evolution of, 17
fixed point of, 18
state space of, 17

state space of, 13
time-dependent, 19
time-invariant, 14
vector field of, 13

edge, see digraph, edge
and graph, edge

eigenvalue, 8
semisimple, 10
simple, 8

envelope theorem, 134
equal-neighbor averaging

rule, see algorithm,
averaging,
adjacency-based

Euclidean minimum
spanning tree, 104

Fermat–Weber center,
132

forest, 22
function
K-, 265
KL-, 265
area, 113, 216
disk-covering, 118, 217
distortion, 112, 216

Fermat–Weber, 132
from-to-inside, 94
ISS-Lyapunov, 266
Lyapunov, 15
mixed distortion-area,

113, 217
multicenter, see

multicenter function
sensing, 150
sphere-packing, 120,

217

generalized Bezout
identity, 72

graph
acyclic, 22
connected, 21
connected component

of, 22
cycle, 22
diameter, 27
directed, see digraph
directed version of, 20
distance, 27
edge, 20
edge set of, 20
Eulerian, 24
intersection, 21
neighbor, 21
node, see graph, vertex
path, 21

length, 27
simple, 22

proximity, see
proximity graph

undirected, 20
union, 21
vertex, 20

degree, 21
radius, 27

vertex set of, 20
group, 6

halfplane, 94
internal tangent, 96

halfspace, 94

identity map, 2

incenter, 98, 122
indicator function, 2
inradius, 98

Krause model, 187, 199

Laplacian
flow, 89

LaSalle Invariance Prin-
ciple

for continuous-time dy-
namical systems,
16

for discrete-time dy-
namical systems, 16,
85

for set-valued discrete-
time dynamical
systems, 18

law
approximate estimate

update and
balancing, 261

cooperative estimate,
257

estimate update and
balancing, 260

single-robot estimate
update, 252

leader, 40, 46
Lie derivative, 16
line integral, 114
linear iteration, see

algorithm,
distributed, linear

Lyapunov function, see
function, Lyapunov

map, 2
composition, 2
image of, 2
inverse, 2
level set of, 2
overapproximation, 20
set-valued, 2, 17

closed, 18
support of, 2

Markov chain, 66, 90
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matrix
adjacency, see weighted

digraph, adjacency
matrix of

circulant, 8, 84
tridiagonal, 62

column-stochastic, 7
convergence time of, 59
convergent, 10
doubly stochastic, 7,

33, 58, 84
exponential

convergence factor of,
59

incidence, see weighted
digraph, incidence
matrix of

irreducible, 11, 34
Laplacian, see weighted

digraph, Laplacian
matrix of

M0-, 85
M-, 85
nonnegative, 7
normal, 7
orthogonal, 6
permutation, 7
positive, 7, 34, 35
primitive, 11, 35, 57
reducible, 11
row-stochastic, 7, 33
semi-convergent, 10
singular values, 8
special orthogonal, 6
spectral radius, 9

essential, 10
spectrum, 8
stochastic, 7, 85, 87, 88
Toeplitz, 7

tridiagonal, 62
tridiagonal

augmented, 64, 238
unitarily similar, 9
unitary, 9

median point, see
Fermat–Weber center

message, 38, 142, 243
basic, 41

message-generation
function, 38, 142, 243

standard, 39, 144
message-reception

function, 243
message-trigger function,

243
method of empirical

distributions, 248
metric space, 3
Metropolis–Hastings

weights, 87
minimum-weight

spanning tree, see
tree, spanning,
minimum-weight

motion control function,
142, 153, 244

multicenter function,
110, 116

area, see function, area
disk-covering, see

function,
disk-covering

distortion, see function,
distortion

expected-value, 110
mixed distortion-area,

see function, mixed
distortion-area, 132

sphere-packing, see
function,
sphere-packing

worst-case, 117

natural immersion, 108
neighborhood

of a point, 4
of a set, 4

network
asynchronous, 163
evolution, 39
robotic, 138

asynchronous
event-driven
evolution, 246

event-driven
asynchronous, 243

evolution of, 143, 153
relative-sensing, 151
uniform, 139

synchronous, 37, 163
node

active, 118, 121
passive, 118, 121

non-degenerate sequence
of stochastic
matrices, 55

norm
Lp, 3
matrix
p-induced, 9

open lune, 4
Overapproximation

Lemma, 20
overapproximation

system, 20

Parallel Axis Theorem,
99, 112

partition, 100
r-limited Voronoi, 100
Voronoi, 100, 111, 118,

121
performance, 110, 216
Perron–Frobenius

theorem
for irreducible matrices,

11
for positive matrices,

11
for primitive matrices,

12
polar moment of inertia,

99
polygon, 94

diagonal, 95
edge of, 94
inscribed, 247, 270
nonconvex, 95
perimeter, 95
simple, 94
vertex

exterior angle, 95
interior angle, 95
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vertex of, 94
polytope, 95

edge, 95
face, 95
facet, see polytope, face
vertex, 95

problem
1-center, 111
n-bugs, 90, 241, 271
area, 113, 115, 131, 135
Art Gallery, 233
BFS tree computation,

43
broadcast, 43
connectivity

maintenance, 177,
198
network, 180
pairwise, 178

continuous p-center,
117

continuous p-median,
111

distortion, 112, 115,
134

gathering, see problem,
rendezvous

hypothesis testing, 90
leader election, 46, 163
mixed distortion-area,

113, 116
rendezvous, 176, 197
shortest-paths tree

computation, 49
uncapacited facility

location, 32
processor, 12

allowable initial states
of, 153

allowable initial values,
38, 142, 243

state, 38, 143
set, 38, 142, 153, 243

projection, 5
proximity graph, 102,

123, 139
r-∞-disk, 104
r-disk, 103

r-limited Delaunay, 103
complete, 102
Delaunay, 103
edge map of, 102
Euclidean minimum

spanning tree of, 104
Gabriel, 104
locally cliqueless graph

of, 108, 133
range-limited visibility,

104
relative neighborhood,

103
sensing, 152
set of neighbors map

of, 105
spatially distributed

graph over, 106
spatially distributed

map over, 109, 116
subgraph of, 105
visibility, 104

reference frame, 148
body, 148
fixed, 148

relative-sensing control
law, 153

equivalent, see control
and communication
law, equivalent

static, 153
ring digraph, see

digraph, ring
robot, 137

allowable initial states
of, 137

anonymous, 145
control vector field of,

137
differential drive, 138
Dubins, 138
input of, 137
input space of, 137
mobile, 137
oblivious, 145
physical state of, 137
Reeds–Shepp, 138

state space of, 137
with relative sensor,

149

segment
closed, 94
open, 94

sensor
disk, 151
footprint, 151
visibility, 151

set
s-partition of, 160
boundary of, 1, 252
connectivity constraint,

180
G-, 182
line-of-sight, 185
locally cliqueless

line-of-sight, 186
pairwise, 178
pairwise line-of-sight,

185
contraction of, 95, 182
convex, 7, 94
globally asymptotically

stable, 15
uniformly, 19

globally attractive, 15
uniformly, 19

interior of, 1
kernel, 95
locally asymptotically

stable, 14
uniformly, 19

locally attractive, 14,
19
uniformly, 19

path connected, 5
positively invariant, 14

strongly, 18
weakly, 18

relative perimeter of, 97
relatively convex, 96
simply connected, 5
stable, 14

uniformly, 19
star-shaped, 95
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strict concavity of, 95
strictly concave point

of, 95
unstable, 14
visibility, 95

range-limited, 95
sink, see digraph, sink of
source, see digraph,

source of
stability, 14

global asymptotic, 15
uniform, 19

input-to-state, 265, 271
local asymptotic, 14

uniform, 19
uniform, 19

state machine, 12
allowable initial states

of, 12
evolution map of, 12
evolution of, 12
input space of, 12
state space of, 12

state-transition function,
38, 142, 153, 244

state-transition trigger
function, 244

subgraph, see digraph,
subgraph of

symmetric difference,
247, 270

synchronization, 68

tangent space, 2
task, see coordination

task
token, 43
topology control, 164

traveling salesperson
tour, 32

tree, 22
breadth-first spanning,

27, 43
child in, 23
depth-first spanning, 29
directed, 23

depth of, 26
spanning, see tree,

spanning
parent in, 23
root of, 23
rooted, see tree,

directed
shortest-paths, 30
siblings in, 23
spanning, 23

minimum-weight, 32
vertex

predecessor of, 23
successor of, 23

unicycle, 138, 219
unique identifier, 37, 138
unstability, 14

vector field
control-affine, 13
driftless, 13
time-dependent, 13

versor, 235
vertex, see digraph,

vertex and graph,
vertex

Vicsek’s model, see
algorithm, averaging,
adjacency-based

visible, 95

Voronoi configuration
r-limited centroidal,

101, 216
centroidal, 101, 216
circumcenter, 101, 217
incenter, 101, 217

Voronoi partition, see
partition, Voronoi,
123

weighted digraph, 25
adjacency matrix of,

25, 33
unweighted, 25

in-degree matrix of, 26
incidence matrix of, 86
Laplacian matrix of,

36, 88
out-degree matrix of,

26
shortest-paths tree of,

see tree,
shortest-paths

undirected, 25
unweighted version of,

25
vertex

in-degree, 26
out-degree, 26

weight-balanced, 26,
33, 88

weighted depth, 27
weighted diameter, 27
weighted distance, 27,

32
weighted radius, 27

Zeno behavior, 246
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Symbol Index

γarc : arc-length parametrization, 5

O(g) : big O Bachmann–Landau symbol, 3

Ω(g) : big Omega Bachmann–Landau symbol, 3

Θ(g) : big Theta Bachmann–Landau symbol, 3

∂S : boundary of the set S, 1

|S| : number of elements of the finite set S, 1

S1 × S2 : Cartesian product of S1 and S2, 2
∏

a∈A Sa : Cartesian product of the collection of sets {Sa}a∈A, 2

Sn : Cartesian product of n copies of S, 2

Sδ : δ-contraction of S, 95

δS : symmetric difference, 247

φ : Rd → R≥0 : density function on Rd, 99

∅ : the empty set, 1

G∩G′ : intersection of graphs G and G′, 21

G∪G′ : union of graphs G and G′, 21

G(S) : set of all undirected graphs whose vertex set is an element
of F(S), 102

Hp,q : closed halfspace defined by p and q, 94

HS(v) : internal tangent halfplane of v with respect to S, 96

[a, b] : closed interval between the numbers a and b, 2

]a, b[ : open interval between the numbers a and b, 2

f : S → T : map f from set S to set T , 2

f ◦ g : composition of the maps f and g, 2

f−1 : inverse map of a function f , 2

f−1(x) : level set of a function f corresponding to a value x, 2

Tf : overapproximation map associated to a time-dependent
evolution f , 20

h : S ⇉ T : set-valued map h from set S to set T , 2

A > 0 : a symmetric positive definite matrix A, 6

A ≥ 0 : a symmetric positive semidefinite matrix A, 6
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AT : transpose of a real matrix A, 6

U∗ : conjugate transpose of a complex matrix U , 6

y[i] : Z≥0 → An : trajectory describing the messages received by processor
i, 39

Hmax : k-center function, 32

HΣ : k-median function, 32

Hexp : expected-value multicenter function, 110

Hdist : distortion function, 112

Harea,a : area function, 113

Hdist-area,a,b : mixed distortion-area function, 113

Hdist-area,a : mixed distortion-area function with b = −a2, 113

Hworst : worst-case multicenter function, 117

Hdc : disk-covering multicenter function, 118

Hsp : sphere-packing multicenter function, 120

S : network, 37

S : robotic network, 138

SF : network associated to F ∈ Rn×n, 53

Sdisk : network of first-order robots with range-limited commu-
nication, 139

SD : network of first-order robots with Delaunay communica-
tion, 140

SLD : network of first-order robots with range-limited Delau-
nay communication, 140

S∞-disk : network of first-order robots with r-∞-disk communica-
tion, 140

Svehicles : network of planar vehicle robots with Delaunay commu-
nication, 140

Svis-disk : network of robots with line-of-sight communication, 140

Scircle : network of first-order robots in S1, 141

Srs
disk : network of first-order robots with range-limited relative

sensing, 151

Srs
vis-disk : network of robots with line-of-sight relative sensing, 152

‖x‖p : Lp-norm of a vector x, 3

‖A‖p : p-induced norm of a matrix A, 9

PI : s-partition of I, 160

f−(a) : limit from the left of f at a, 114

f+(a) : limit from the right of f at a, 114

Jφ(S, p) : polar moment of inertia of S about p with respect to φ,
99

w[i] : state of processor i, 38
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w
[i]
0 : initial state of processor i, 39

W [i] : state set of processor i, 38

W
[i]
0 : set of allowable initial values for processor i, 38

rexp(A) : exponential convergence factor of A ∈ Rn×n, 59

Σb : body reference frame, 148

Σfixed : fixed reference frame, 148

[p, q] : closed segment with extreme points p and q, 94

]p, q[ : open segment with extreme points p and q, 94

rbt-sns : Rd → Arbt :
sensing function, 150

env-sns : P(Rd) → Aenv :
environment sensing function, 150

{Sa}a∈A : collection of sets indexed by the index set A, 2

x ∈ S : x is an element of the set S, 1

R ⊂ S : R is a subset of S, 1

R ( S : R is a strict subset of S, 1

S1 ∩S2 : intersection of sets S1 and S2, 2

∩a∈A Sa : intersection product of the collection of sets {Sa}a∈A, 2

S1 ∪S2 : union of sets S1 and S2, 2

∪a∈A Sa : union of the collection of sets {Sa}a∈A, 2

ei : the vector in Rd whose entries are zero except for the ith
entry, which is one, 2

1d : the vector in Rd whose entries are all equal to one, 2

1d− : shorthand for (1,−1, 1, . . . , (−1)d−2, (−1)d−1) ∈ Rd, 65

0d : the vector in Rd whose entries are all equal to zero, 2

Xdisk

(

p[i], p[j]
)

: pairwise connectivity constraint set of agent at p[i] with

respect to agent at p[j], 178

Xdisk(p
[i],P) : connectivity constraint set of agent at p[i] with respect

to P, 180

Xdisk,G(p[i],P) : G-connectivity constraint set of agent at p[i] with respect
to P, 182

Xvis-disk(p
[i], p[j];Qδ) :

line-of-sight connectivity constraint set in Qδ of agent at
p[i] with respect to agent at p[j], 185

Xvis-disk(p
[i],P;Qδ) :

line-of-sight connectivity constraint set in Qδ of agent at
p[i] with respect to P, 185

Xlc-vis-disk(p
[i],P;Qδ) :

locally cliqueless line-of-sight connectivity constraint set
in Qδ of agent at p[i] with respect to P, 186
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A : communication alphabet, 38

Arbt : sensing alphabet, 150

Aenv : environment sensing alphabet, 150

Aφ(S) : area of S with respect to φ, 99

avrg(S) : average of points in S, 177

A(G) : adjacency matrix of G, 25

ATrid±
n (a, b) : augmented tridiagonal matrix, 64

B(x, ε) : open ball of center x and radius ε, 4

B(x, ε) : closed ball of center x and radius ε, 4

CMφ(S) : centroid or center of mass of S with respect to φ, 99

CC(S) : circumcenter of S, 97

CR(S) : circumradius of S, 97

CC(DA) : communication complexity of a distributed algorithm DA,
41

MCC(T) : mean communication complexity to achieve T, 158

MCC(T, CC) : mean communication complexity to achieve T with CC ,
158

MCC(T, CC , x0, w0) :
mean communication complexity to achieve T with CC
from (x0, w0), 158

IH-MCC(CC , x0, w0) :
infinite-horizon mean communication complexity, 159

TCC(T) : total communication complexity to achieve T, 158

TCC(T, CC) : total communication complexity to achieve T with CC ,
158

TCC(T, CC , x0, w0) :
total communication complexity to achieve T with CC
from (x0, w0), 158

CCagree & pursue : agree and pursue control and communication law, 146

CCaveraging : averaging control and communication law, 187

CCcrcmcntr : circumcenter control and communication law, 189

CCpll-crcmcntr : parallel circumcenter control and communication law,
192

CCnonconvex crcmcntr :
circumcenter control and communication law in noncon-
vex environments, 195

CCVrn-cntrd : Voronoi-centroid control and communication law, 218
CCVrn-cntrd-dynmcs :

Voronoi-centroid control and communication law on pla-
nar vehicles, 219

CCVrn-crcmcntr : Voronoi-circumcenter control and communication law,
221

310

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2009. Manuscript under contract. This version: March 22, 2009



DCRN March 22, 2009

CCVrn-ncntr : Voronoi-incenter control and communication law, 222

CCLmtd-Vrn-nrml : limited-Voronoi-normal control and communication law,
223

CCLmtd-Vrn-cntrd :
limited-Voronoi-centroid control and communication law,
224

CCRng-Vrn-cntrd : range-limited version of Voronoi-centroid control and com-
munication law, 225

CC : control and communication law, 142

CC (s,PI) : PI -rescheduling of CC , 161

ctl : motion control function, 142

co(S) : convex hull of S, 94

κabs : absolute curvature, 6

κsigned : signed curvature, 6

C : set of complex numbers, 2

Cn×m : set of n×m complex matrices, 6

Circn(a, b, c) : tridiagonal circulant matrix, 62

Din(G) : weighted in-degree matrix of G, 26

Dout(G) : weighted out-degree matrix of G, 26

din(v) : weighted in-degree of a vertex v, 26

dout(v) : weighted out-degree of a vertex v, 26

diag(Sn) : diagonal set of the Cartesian product Sn, 2

diag(v) : square matrix with components of vector v in the diago-
nal, 6

diam(S) : diameter of the set S, 5

diam(G) : diameter of G, 26

Dscn(f) : set of points where f is discontinuous, 114

dist : distance function, 3, 4

Dcurvature(qi, qj) : curvature distance between qi and qj , 249

Darc(qi, qj) : arc-length distance between qi and qj , 249

distc : clockwise distance, 3

distcc : counterclockwise distance, 3

distg : geodesic distance, 3

distp : Lp-distance, 3

Dλ(qi, qj) : pseudo-distance between qi and qj , 250

distG : distance in G, 26

wdistG : weighted distance in G, 27

DA : distributed algorithm, 38

EG : edge map associated to G, 102

E(G) : edges of G, 20
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Ecmm : set of communication links in a network of processors or
in a robotic network, 37

Ed(Q) : edges of Q, 95

ECC : event-driven control and communication law, 243

Fa(Q) : faces of Q, 95

F(S) : collection of finite subsets of the set S, 1

fti : from-to-inside function, 94

G : a graph or a digraph, 20

G : proximity graph, 102

GD : Delaunay graph, 103

GEMST,G : Euclidean minimum spanning tree of G, 104

GEMST : Euclidean minimum spanning tree of the complete graph,
104

GG : Gabriel graph, 104

Glc,G : locally cliqueless graph of G, 108

GRN : relative neighborhood graph, 103

Gcmplt : complete proximity graph, 102

Gdisk(r) : r-disk graph, 103

G∞-disk(r) : r-∞-disk graph, 104

GLD(r) : r-limited Delaunay graph, 103

Gvis,Q : visibility graph in Q, 104

Gvis-disk,Q : range-limited visibility graph in Q, 104

idS : identity map on a set S, 2

In : n× n identity matrix, 6

image(f) : image of the map f , 2

iF : Xn → F(X) : natural immersion of Xn into F(X), 108

IC(S) : incenter of S, 98

1R : indicator map associated with a set R, 2

IR(S) : inradius of S, 98

int(S) : interior of the set S, 1

I : set of unique identifiers, 37

kernel(S) : visibility kernel set of S, 95

kernel(A) : kernel subspace of a matrix A, 6

L(G) : Laplacian matrix of G, 36

LfV : Lie derivative of a function V along a vector field f , 16

msg-gen : message-generation function, 243

msg-rec : message-reception function, 243

msg-trig : message-trigger function, 243

msg : message-generation function, 38
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M(x,w) : set of all non-null messages generated during one com-
munication round from (x,w), 158

MST : minimum-weight spanning tree, 32

NG(v) : set of neighbors of v in G, 21

N in
G (v) : set of in-neighbors of v in G, 21

N out
G (v) : set of out-neighbors of v in G, 21

NG : set of neighbors map of G, 105

null : null message, 38

N : set of natural numbers, 2

nout : outward normal vector, 6

PCC(S) : parallel circumcenter of S, 192

P(S) : collection of subsets of the set S, 1

projW : projection onto the set W , 5

Rn×m : set of n×m real matrices, 6

R : set of real numbers, 2

R≥0 : set of non-negative real numbers, 2

R>0 : set of positive real numbers, 2

radius(v,G) : radius of v in G, 26

ρ : radius of curvature, 6

rank(A) : rank of a matrix A, 6

rco(S;X) : relative convex hull of S in X, 97

R : set of mobile robots, 138

SC(DA) : space complexity of a distributed algorithm DA, 41

SC(T, CC) : space complexity to achieve T with CC , 158

ρ(A) : spectral radius of a matrix A, 9

ρess(A) : essential spectral radius of a matrix A, 10

spec(A) : spectrum of a matrix A, 8

Sd : sphere of dimension d, 2

stf : state-transition function, 38

stf-trig : state-transition trigger function, 244

Tε(A) : ε-convergence time of A ∈ Rn×n, 59

TRd : tangent space of Rd, 2

TSd : tangent space of Sd, 2

T : coordination task, 155

Tε-sp-dply : ε-sphere-packing deployment task, 217

Tε-bndry : boundary estimation task, 251

Tε-eqdstnc : agent equidistance task, 251

Tdir : direction agreement task, 156

Tε-eqdstnc : equidistance task, 156
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Trndzvs : rendezvous task, 177

Tε-rndzvs : ε-rendezvous task, 177

Tε-distor-dply : ε-distortion deployment task, 216

Tε-r-area-dply : ε-r-area deployment task, 216

Tε-r-distor-area-dply : ε-r-distortion-area deployment task, 216

Tε-dc-dply : ε-disk-covering deployment task, 217

TC(DA) : time complexity of a distributed algorithm DA, 41

TC(T) : time complexity to achieve T, 157

TC(T, CC) : time complexity to achieve T with CC , 157

TC(T, CC , x0, w0) :
time complexity to achieve T with CC from (x0, w0), 157

TSP : traveling salesperson tour, 32

TBFS : breadth-first spanning (BFS) tree, 27

TDFS : depth-first spanning (DFS) tree, 29

Tshortest-paths : shortest-paths tree, 30

Tridn(a, b, c) : tridiagonal Toeplitz matrix, 62

vers : Rd → Rd : versor operator, 235

V (G) : vertices of G, 20

Ve(Q) : vertices of Q, 95

Vi(p;S) : set of all points in S visible from p, 95

Vidisk(p;S) : set of all points in S within a distance r and visible from
p, 95

Vi(P) : Voronoi cell of pi, 100

Vi,r(P) : r-limited Voronoi cell of pi, 100

V(P) : Voronoi partition generated by P = {p1, . . . , pn}, 100

Vr(P) : r-limited Voronoi partition generated by P = {p1, . . . , pn},
100

Z≥0 : set of non-negative integer numbers, 2
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